<h2>
Answer:</h2>
(c) 5m/s²
<h2>
Explanation:</h2>
Total acceleration (a) of a particle in a circular motion is the vector sum of the radial or centripetal acceleration (
) of the particle and the tangential acceleration (
) of the particle and its magnitude can be calculated as follows;
a =
---------------------(i)
<em>But;</em>
=
------------------------------(ii)
Where;
v = instantaneous velocity
r = radius of the circular path of motion
<em>From the question;</em>
v = 30m/s
r = 300m
(i) First let's calculate the centripetal acceleration by substituting the values above into equation (ii) as follows;
= 
= 
= 3m/s²
(ii) From the question, the velocity of the particle is increasing at a constant rate of 4m/s² and that is the tangential acceleration
, of the particle. i.e;
= 4m/s²
(iii) Now substitute the values of
and
into equation (i) as follows;
a = 
a = 
a = 
a = 5m/s²
Therefore, the magnitude of its total acceleration a, is 5m/s²
Let m = mass of asteroid y.
Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.
Given:
F = 6.2x10⁸ N
d = 2100 km = 2.1x10⁶ m
Note that
G = 6.67408x10⁻¹¹ m³/(kg-s²)
The gravitational force between the asteroids is
F = (G*m*(m/3))/d² = (Gm²)/(3d²)
or
m² = (3Fd²)/G
= [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²))
= 1.229x10³² kg²
m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)
Answer: 1.1x10¹⁶ kg
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.