answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrezito [222]
2 years ago
8

A 20kg mass approaches a spring at a speed of 30 m/s. The mass compresses the spring 12cm before coming to a stop. Calculate the

spring constant k of the spring (N/m). A. 150 kN/m B. 41.7 kN/m C. 125 N/m D. 1.25 MN/m
Physics
1 answer:
Oksana_A [137]2 years ago
5 0

Answer:

625000 N/ m

Explanation:

m= 20 kg

v= 30 m/s

x= 12 cm

k = ?

Here when the mass when hits at spring its speed is

Vi= 30 m/s

Finally it comes to rest after compressing for 12 cm

i-e Vf = 0 m/s

Distance= S= 12 cm = 0.12 m

using

2aS= Vf2 - Vi2

==> 2a ×0.12 = o- 30 × 30

==> a = 900 ÷ 0.24 = 3750 m/sec2

Now we know;

F = ma

F= -Kx

==> ma= -kx

==> 20 × 3750 = -K × 0.12

==> k = 625000 N/ m

You might be interested in
A particle traveling in a circular path of radius 300 m has an instantaneous velocity of 30 m/s and its velocity is increasing a
grigory [225]
<h2>Answer:</h2>

(c) 5m/s²

<h2>Explanation:</h2>

Total acceleration (a) of a particle in a circular motion is the vector sum of the radial or centripetal acceleration (a_{C}) of the particle and the tangential acceleration (a_{T}) of the particle and its magnitude can be calculated as follows;

a = \sqrt{(a_{C})^2 + (a_{T})^2}           ---------------------(i)

<em>But;</em>

a_{C} = \frac{v^{2} }{r}      ------------------------------(ii)

Where;

v = instantaneous velocity

r =  radius of the circular path of motion

<em>From the question;</em>

v = 30m/s

r = 300m

(i) First let's calculate the centripetal acceleration by substituting the values above into equation (ii) as follows;

a_{C} = \frac{30^{2} }{300}

a_{C} = \frac{900}{300}

a_{C} = 3m/s²

(ii) From the question, the velocity of the particle is increasing at a constant rate of 4m/s²  and that is the tangential acceleration a_{T}, of the particle. i.e;

a_{T} = 4m/s²

(iii) Now substitute the values of a_{C} and a_{T} into equation (i) as follows;

a = \sqrt{(3)^2 + (4)^2}

a = \sqrt{(9) + (16)}

a = \sqrt{25}

a = 5m/s²

Therefore, the magnitude of its total acceleration a, is 5m/s²

5 0
2 years ago
A steel cable lifting a heavy box stretches by ΔL . In order for the cable to stretch by only half of ΔL , by about what factor
il63 [147K]

Answer:

2.0

Explanation:

because I'm a geek and ik

6 0
2 years ago
The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
SOVA2 [1]
Let m =  mass of asteroid y.
Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.

Given:
F = 6.2x10⁸ N
d = 2100 km = 2.1x10⁶ m
Note that
G = 6.67408x10⁻¹¹ m³/(kg-s²)

The gravitational force between the asteroids is
F = (G*m*(m/3))/d² = (Gm²)/(3d²)
or
m² = (3Fd²)/G
     = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²))
    = 1.229x10³² kg²
m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)

Answer: 1.1x10¹⁶ kg
4 0
2 years ago
Read 2 more answers
For a magnetic field strength of 2T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical
nydimaria [60]

Answer:

Incomplete question

This is the complete question

For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter

Explanation:

Given the magnetic field

B=2T

Lenght of rod is 1mm

L=1/1000=0.001m

Diameter of rod=1.5mm

d=1.5/1000=0.0015m

Radius is given as

r=d/2=0.0015/2

r=0.00075m

Area of the circle is πr²

A=π×0.00075²

A=1.77×10^-6m²

Given that the voltage applied is 100mV

V=0.1V

Given that resistive is 0.6 Ωm

We can calculate the resistance of the cylinder by using

R= ρl/A

R=0.6×0.001/1.77×10^-6

R=339.4Ω

Then the current can be calculated, using ohms law

V=iR

i=V/R

i=0.1/339.4

i=2.95×10^-4 A

i=29.5 mA

The force in a magnetic field of a wire is given as

B=μoI/2πR

Where

μo is a constant and its value is

μo=4π×10^-7 Tm/A

Then,

B=4π×10^-7×2.95×10^-4/(2π×0.00075)

B=8.43×10^-8 T

Then, the force is given as

F=iLB

Since B=2T

F=iL(2B)

F=2.95×10^-4×2×8.34×10^-8

F=4.97×10^-11N

7 0
2 years ago
A sound technician is testing the sound acoustics in a theatre for an upcoming music concert. As he moves towards the speakers,
Harlamova29_29 [7]

Answer: Increase in wave frequency

Explanation:

When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>

In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    10·1 answer
  • What is the magnitude of the force acting on a spring with a spring constant of 275 N/m that is stretched 14.3 cm?
    13·1 answer
  • The air in tires can support a car because gases __________.
    5·1 answer
  • Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
    10·2 answers
  • A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri
    13·1 answer
  • A factory robot drops a 10 kg computer onto a conveyor belt running at 3.1 m/s. The materials are such that
    9·1 answer
  • Which materials are good insulators? Check all that apply.
    12·2 answers
  • 1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
    10·1 answer
  • A student observes that for the same net force heavier objects accelerate less which statement describes the correct conclusion?
    13·2 answers
  • How long will it take a 2190 W motor to lift a 1.47 x 104 g box, 6.34 x 104 mm vertically.​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!