answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
2 years ago
9

A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference b

etween the plates is 275 V. Assume a plate separation of d 1.53 cm and a plate area of A = 25.0 cm2. when the battery is removed, the capacitor is plunged into a container of distilled water. Assume distilled water is an insulator with a dielectric constant of 80.0
(a) Calculate the charge on the plates in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
before Qi = _____
after Qf = ______
(b) Determine the capacitance (in F) and potential difference (in V) after immersion
(c) Determine the change in energy (in n]) of the capacitor Δυ = nJ
(d) What If? Repeat parts (a) through (c) of the problem in the case that the capacitor is immersed in distilled water while still connected to the 275 V potential difference
Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
Determine the capacitance (in F) and potential difference (in V) after immersion
Determine the change in energy (in nJ) of the capacitor AU nJ
Physics
1 answer:
Lesechka [4]2 years ago
6 0

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

You might be interested in
A ball bearing of radius of 1.5 mm made of iron of density
Serjik [45]

Answer:

\boxed{\sf Viscosity \ of \ glycerine \ (\eta) = 14.382 \ poise}

Given:

Radius of ball bearing (r) = 1.5 mm = 0.15 cm

Density of iron (ρ) = 7.85 g/cm³

Density of glycerine (σ) = 1.25 g/cm³

Terminal velocity (v) = 2.25 cm/s

Acceleration due to gravity (g) = 980.6 cm/s²

To Find:

Viscosity of glycerine (\sf \eta)

Explanation:

\boxed{ \bold{v =  \frac{2}{9}  \frac{( {r}^{2} ( \rho -  \sigma)g)}{ \eta} }}

\sf \implies \eta =  \frac{2}{9}  \frac{( {r}^{2}( \rho -  \sigma)g )}{v}

Substituting values of r, ρ, σ, v & g in the equation:

\sf \implies \eta =  \frac{2}{9}  \frac{( {(0.15)}^{2}  \times  (7.85 - 1.25) \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \frac{(0.0225 \times 6.6 \times 980.6)}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times  \frac{145.6191}{2.25}

\sf \implies \eta =  \frac{2}{9}  \times 64.7196

\sf \implies \eta =  2 \times 7.191

\sf \implies \eta =  14.382 \: poise

6 0
2 years ago
Ugonna stands at the top of an incline and pushes a 100−kg crate to get it started sliding down the incline. The crate slows to
Anna [14]

Answer:(a)891.64 N

(b)0.7

Explanation:

Mass of crate m=100 kg

Crate slows down in s=1.5 m

initial speed u=1.77 m/s

inclination \theta =30^{\circ}

From Work-Energy Principle

Work done by all the Forces is equal to change in Kinetic Energy

W_{friction}+W_{gravity}=\frac{1}{2}mv_i^2-\frac{1}{2}mv_f^2

W_{gravity}=mg(0-h)=mgs\sin \theta

W_{gravity}=-mgs\sin \theta

W_{gravity}=-100\times 9.8\times 1.5\sin 30=-735 N

change in kinetic energy=\frac{1}{2}\times 100\times 1.77^2=156.64 J

W_{friction}=156.64+735=891.645

(b)Coefficient of sliding friction

f_r\cdot s=W_{friciton}

891.645=f_r\times 1.5

f_r=594.43 N

and f_r=\mu mg\cos \theta

\mu 100\times 9.8\times \cos 30=594.43

\mu =0.7

5 0
2 years ago
1. A diffraction grating with 5.000 x 103 lines/cm is used to examine the sodium
Nuetrik [128]

Answer:

0.0002°, 0.1691°, 0.338°

Explanation:

Difference between the two line = 5.97 * 10-⁸m

d = 1 / N

N = 5.0 * 10³

d = 2.0 * 10⁴m

nL = Nsin¤

For first order

588.995 * 10-⁹ = 2.0 * 10-⁴ sin ¤

Sin¤ = 2.944*10-³

¤ = sin-¹ 0.002944

¤ = 0.1687°

First order ¤ =

Sin-¹(589.592*-⁹ / 2.0 * 10-⁴)

Sin-¹ (0.002947) = 0.1689°

Angular separation = 0.1689 - 0.1687 = 0.0002°

Second order ¤ = sin-¹ [2 (589.59*10-⁹ / 2.0*10-⁴)] = sin-¹ (0.005895)

Second order ¤ = 0.3378°

Angular difference = 0.3378° - 0.1687° = 0.1691°

Third order ¤ = sin-¹ [3(589.59*10-⁹ /2.0*10-⁴] = 0.5067°

Angular difference = 0.5067° - 0.1687° = 0.338°

7 1
2 years ago
Read 2 more answers
In Paul Hewitt's book, he poses this question: "If the forces that act on a bullet and the recoiling gun from which it is fired
Sauron [17]
They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.

Hope this helps :)
4 0
2 years ago
A quarterback throws a football at 40km/hr to a receiver 50yd away. How much time does it take the ball to reach the receiver
Akimi4 [234]

Given:

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

To find:

Time required by ball to reach the receiver = ?

Formula used:

speed = \frac{distance}{time}

Solution:

The speed of the ball is given by,

speed = \frac{distance}{time}

Thus,

Time = \frac{distance}{speed}

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

Time = 4.12 second

Hence, ball reaches the receiver in 4.12 second.

3 0
2 years ago
Other questions:
  • Show that a directed multigraph having no isolated vertices has an euler circuit if and only if the graph is weakly connected an
    11·1 answer
  • A rocket lifts off the pad at cape canaveral. according to newton's law of gravitation, the force of gravity on the rocket is gi
    10·1 answer
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • A child's toy is suspended from the ceiling by means of a string. The Earth pulls downward on the toy with its weight force of 8
    5·1 answer
  • Which of the following statements is false?
    6·2 answers
  • If the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal
    6·1 answer
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel ro
    8·1 answer
  • Assume you are given an int variable named nElements and a 2-dimensional array that has been created and assigned to a2d. Write
    11·1 answer
  • To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!