By definition it is known that force equals mass by acceleration. In other words F = m * a. To find the acceleration, you must clear the formula mentioned. Therefore, for a force of 190.08N and a mass of 28 Kg, we have that the acceleration is a = F / m = (190.08) / (28) = 6.79 m / s ^ 2
Answer:
Explanation:
Let v be the linear velocity , ω be the angular velocity and I be the moment of inertia of the the puck.
Kinetic energy ( linear ) = 1/2 mv²
Rotational kinetic energy = 1/2 I ω²
I = 1/2 m r² ( m and r be the mass and radius of the puck )
Rotational kinetic energy = 1/2 x1/2 m r² ω²
= 1/4 m v² ( v = r ω )
Total energy
= Kinetic energy ( linear ) + Rotational kinetic energy
= 1/2 mv² + 1/4 m v²
= 3/4 mv²
rotational K E / Total K E = 1/4 m v² / 3/4 mv²
= 1 /3
So 1 /3 rd of total energy is rotational K E.
Answer:
option C
Explanation:
given,
energy dissipated by the system to the surrounding = 12 J
Work done on the system = 28 J
change in internal energy of the system
Δ U = Q - W
system losses energy = - 12 J
work done = -28 J
Δ U = Q - W
Δ U = -12 -(-28)
Δ U = 16 J
hence, the correct answer is option C
Mechanical energy is the sum of kinetic energy and potential energy, or E=Ek+Ep. So Ek=(1/2)*m*v² where m is the mass of the object and v is it's velocity. Mp=m*g*h where m is the mass, g=9.81 m/s² and h is the height of the object. So after we input the numbers the total mechanical energy is
E=(1/2)*2.5*(4.5²) + 2.5*9.81*18 = 25.3125 J + 441.45 J = 466.7625 J. The correct answer is E= 466 J.