The answer would be negative charge because +, and - dont like each other so they retract from each other.
Newtons second law.. <span>The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.</span>
Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum
Answer:

Explanation:
During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.
Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

The work done is given by the friction force and the distance traveled,

Where ![\mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)](https://tex.z-dn.net/?f=%20%5Cmu_k%20%5B%2F%20tex%5D%20is%20the%20coefficient%20of%20kinetic%20friction%3C%2Fp%3E%3Cp%3EN%20is%20the%20normal%20force%20previously%20found%20d%20is%20the%20distance%20traveled%2C%3C%2Fp%3E%3Cp%3EReplacing%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW_f%20%3D%20%280.80%29%28441%29%280.42%29)
The thermal energy released through the work done is,

Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision
hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)