answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
2 years ago
11

The rear wheel on a clown’s bicycle has twice the radius of the front wheel. (a) When the bicycle is moving, is the linear speed

at the very top of the rear wheel greater than, less than, or the same as that of the very top of the front wheel? (b) Is the angular speed of the rear wheel greater than, less than, or the same as that of the front wheel?
Physics
1 answer:
8_murik_8 [283]2 years ago
7 0

Answer:

a). same as

b). less than

Explanation:

a). When a bicycle is moving, the linear speed at the top of the rear wheel is same as the linear speed at the top of the front wheel. Since the clown's bicycle is a rigid body, both the wheels that is the front wheel and the rear wheel will move with the same linear speed.

b). Since we know that angular speed varies inversely to the radius of the wheel.

That is ω = 1 / r

Since the rear wheel has twice the radius of that of the front wheel, therefore real wheel will have less angular speed than the front wheel.

Therefore, the angular speed of the rear wheel is less than the angular speed of the front wheel.

You might be interested in
You are exploring a distant planet. When your spaceship is in a circular orbit at a distance of 630 km above the planet's surfac
NemiM [27]

Answer:

The horizontal range of the projectile = 26.63 meters

Explanation:

Step 1: Data given

Distance above the planet's surface = 630 km = 630000

The ship's orbal speed = 4900 m/s

Radius of the planet = 4.48 *10^6 m

Initial speed of the projectile = 13.6 m/s

Angle = 30.8 °

Step 2: Calculate g

g= GM /R² = (v²*(R+h)) /(R²)

⇒ with v= the ship's orbal speed = 4900 m/S

⇒ with R = the radius of the planet = 4.48 *10^6 m

⇒ with h = the distance above the planet's surface = 630000 meter

g = (4900² * ( 4.48*10^6+ 630000)) / ((4.48*10^6)²)

g = 6.11 m/s²

<u>Step 3:</u> Describe the position of the projectile

Horizontal component: x(t) = v0*t *cos∅

Vertical component: y(t) = v0*t *sin∅ -1/2 gt² ( will be reduced to 0 in time )

⇒ with ∅ = 30.8 °

⇒ with v0 = 13.6 m/s

⇒ with t= v(sin∅)/g = 1.14 s

Horizontal range d = v0²/g *2sin∅cos∅  = v0²/g * sin2∅

Horizontal range d =(13.6²)/6.11 * sin(2*30.8)

Horizontal range d =26.63 m

The horizontal range of the projectile = 26.63 meters

6 0
2 years ago
A 110-pound person pulls herself up 4.0 feet. This took her 2.5 seconds. How much power was developed?
mrs_skeptik [129]

Answer:

0.32 Hp is the answer. right

5 0
1 year ago
Read 2 more answers
An 80-g particle moving with an initial speed of 50 m/s in the positive x direction strikes and sticks to a 60-g particle moving
liubo4ka [24]

The collision is a form of inelastic collision because the it forms a single mass after is collides. So it can be solve by momentum balance

( 0.08 kg * 50 m/s ) + ( 0.06 kg * 50 m/s) = ( 0.08 + 0.06 kg ) v

V = 50 m/s

So the kinetic energy lost is

KE = 0.5 (50 m/s)^2) *( 0.14 – 0.08kg )

KE = 75 J

8 0
2 years ago
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
2 years ago
A baseball is hit with a speed of 33.6 m/s. Calculate its height and the distance traveled if it is hit at angles of 30.0°, 45.0
Solnce55 [7]

Answer:

At 30 degrees, height = 14.39 m and distance = 49.83 m

At 45 degrees, height = 28.77 m and distance = 57.54 m

At 60 degrees, height = 43.16 m and distance = 49.83 m

Explanation:

Let ∝ be the angle with respect to the horizontal that the baseball is hit with.

The horizontal component of the velocity is vcos(∝) and the vertical component of the velocity is vsin(∝).

Ignore air resistant, only gravitational acceleration g = -9.81 m/s2 affect the ball vertically. We can use the following equation to calculate the time it takes to reach maximum height (at 0 speed)

vsin(\alpha) + gt = 0

t = \frac{-vsin(\alpha)}{g}

So the vertical distance it travels within time t is

y = vsin(\alpha)t + gt^2/2 = vsin(\alpha)\frac{-vsin(\alpha)}{g} + g\frac{(-vsin(\alpha))^2}{2g^2}

y = \frac{-v^2sin^2(\alpha)}{g} + frac{v^2sin^2(\alpha)}{2g}

y = \frac{-v^2sin^2(\alpha)}{2g}

Similarly the horizontal distance it travels within time t is:

x = vcos(\alpha)t = vcos(\alpha)\frac{-vsin(\alpha)}{g}

x = \frac{-v^2sin(2\alpha)}{2g}

We can pre-calcualte the quantity \frac{-v^2}{2g} = \frac{-33.6^2}{2*(-9.81)} = 57.54

So y = 57.54sin^2(\alpha)

x = 57.54sin(2\alpha)

From here we can plug-in the angles values of 30, 45 and 60 degrees

At 30 degrees, height = 14.39 m and distance = 49.83 m

At 45 degrees, height = 28.77 m and distance = 57.54 m

At 60 degrees, height = 43.16 m and distance = 49.83 m

8 0
2 years ago
Other questions:
  • The burj Khalifa in Dubai is the worlds tallest building. It rises to an amazing 828M above the ground and if you were to get to
    13·1 answer
  • The inner and outer surfaces of a 5m x 6m brick wall of thickness 30 cm and thermal conductivity 0.69 w/m.0 c are maintained at
    7·1 answer
  • Irina finds an unlabeled box of fine needles, and wants to determine how thick they are. A standard ruler will not do the job, a
    9·1 answer
  • A projectile of mass M, initially at rest, is acted upon by a net force [including gravity] that increases quadratically with ti
    8·1 answer
  • A 0.305 kg book rests at an angle against one side of a bookshelf. The magnitude and direction of the total force exerted on the
    10·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitt
    6·1 answer
  • A sphere of radius 5.00 cm carries charge 3.00 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center
    9·1 answer
  • A 10-turn conducting loop with a radius of 3.0 cm spins at 60 revolutions per second in a magnetic field of 0.50T. The maximum e
    8·1 answer
  • A construction worker accidentally drops a brick from a high scaffold. a. What is the brick's velocity after 4.0 s? b. How far d
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!