B. A 50g fish swimming in a fish tank.
Answer:
a. Springs oscillate with the same frequency
Explanation:
As they both are in the same height at equilibrium, so
weight of ball must be balanced with spring force, that is
k×x=mg
k= stiffness constant of spring
x=distance stretched
g= acceleration due to gravity
so, we can write
k/m=g/x
as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

and k/m is same for both the springs so they will oscillate at the same frequency.
hence option a is correct.
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
The answer for this problem is clarified through this, the
system is absorbing (+). And now see that it uses that the SURROUNDINGS are
doing 84 KJ of work. Any time a system is overshadowing work done on it by the
surroundings the sign will be +. So it's just 12.4 KJ + 4.2 = 16.6 KJ.
Answer:
A title
Explanation:
Because this is middle school.