answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
2 years ago
13

A 50 kg rocket generates 990 N of thrust. What will be its acceleration if it is launched straight up?

Physics
1 answer:
Ilia_Sergeevich [38]2 years ago
4 0

Answer:

The acceleration of the rocket is 10 m/s².

Explanation:

Let the acceleration of the rocket be a m/s².

Given:

Mass of the rocket is, m=50\ kg

Thrust force acting upward is, F_{th}=990\ N

Acceleration due to gravity is, g=9.8\ m/s^2

Now, force acting in the downward direction is due to the weight of the rocket and is given as:

W=mg=50\times 9.8=490\ N

Now, net force acting on the rocket in upward direction is given as:

F_{net}=F_{th}-W\\F_{net}=990-490=500\ N

Therefore, from Newton's second law, net force acting on the rocket is equal to the product of mass and acceleration.

F_{net}=ma\\500=50a\\a=\frac{500}{50}=10\ m/s^2

Therefore, the acceleration of the rocket is 10 m/s².

You might be interested in
evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7
likoan [24]

Given :

Displacement , y = 0.75 m .

Angular acceleration , \alpha=0.95\ s^{-2} .

Initial angular velocity , \omega_o=6.3\ s^{-1} .

To Find :

The value of vertical velocity after time t = 0.25 s .

Solution :

By equation of circular motion is given by :

\omega=\omega_o+\alpha t

Putting all given values we get :

\omega=6.3+0.95\times 0.25\\\\\omega= $$6.5375\ s^{-1}

Now , vertical velocity is given by :

v=y\omega\\\\v=0.75\times 6.5375\ m/s\\\\v=4.90\ m/s

Therefore , the numerical value of the vertical velocity of the car at time t=0.25 s is 4.90 m/s .

Hence , this is the required solution .

8 0
2 years ago
Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
Drupady [299]

<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>

<span> </span>

6 0
2 years ago
Read 2 more answers
A rectangular coil of dimensions 5.40cm x 8.50cm consists of25 turns of wire. The coil carries a current of 15.0 mA.
Kazeer [188]

Answer:

(a) Magnetic moment will be 17.212\times 10^{-4}A-m^2

(b) Torque will be 6.024\times 10^{-4}N-m

Explanation:

We have given dimension of the rectangular 5.4 cm × 8.5 cm

So area of the rectangular coil A=5.4\times 8.5=45.9cm^2=45.9\times 10^{-4}m^2

Current is given as i=15mA=15\times 10^{-3}A

Number of turns N = 25

(A) We know that magnetic moment is given by magnetic\ moment=NiA=25\times 45.9\times 10^{-4}\times 15\times 10^{-3}=17.212\times 10^{-4}A-m^2

(b) Magnetic field is given as B = 0.350 T

We know that torque is given by \tau =BINA=0.350\times 15\times 10^{-3}\times 25\times 45.9\times 10^{-4}=6.024\times 10^{-4}N-m

4 0
2 years ago
A circular loop of diameter 10 cm, carrying a current of 0.20 A, is placed inside a magnetic field B⃗ =0.30 Tk^. The normal to t
arlik [135]

Answer:

The magnitude of the torque on the loop due to the magnetic field is 4.7\times10^{-4}\ N-m.

Explanation:

Given that,

Diameter = 10 cm

Current = 0.20 A

Magnetic field = 0.30 T

Unit vectorn=-0.60\hat{i}-0.080\hat{j}

We need to calculate the torque on the loop

Using formula of torque

\tau=NIAB\sin\theta

Where, N = number of turns

A = area

I = current

B = magnetic field

Put the value into the formula

\tau=1\times0.20\times\pi\times(5\times10^{-2})^2\times0.30\times\sin90^{\circ}

\tau=4.7\times10^{-4}\ N-m

Hence, The magnitude of the torque on the loop due to the magnetic field is 4.7\times10^{-4}\ N-m.

5 0
2 years ago
The acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?
VladimirAG [237]

We have that for the Question "the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?"

  • it can be said that the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line

From the question we are told

the acceleration of the object at time t = 0.7 s is most nearly equal to which of the following?

Generally the equation for the Force  is mathematically given as

F=\frac{F}{dx}

Therefore

F=-kdx

k=600Nm^{-1}

now

K.E=0.5x ds^2

K.E=600*(-0.1^2)

K.E=3J

Therefore

the acceleration of the object at time t = 0.7 s is most nearly equal to the slope of the line connecting the origin and the point where the graph where the graph crosses the 0.7s grid line

For more information on this visit

brainly.com/question/23379286

6 0
2 years ago
Other questions:
  • An object of mass m swings in a horizontal circle on a string of length L that tilts downward at angle θ. Find an expression for
    12·2 answers
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • If you know the amount of the unbalanced force acting upon an object and the mass of the object, using Newton's 2nd Law what cou
    6·2 answers
  • The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma
    10·1 answer
  • A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
    5·1 answer
  • You use a slingshot to launch a potato horizontally from the edge of a cliff with speed v0. The acceleration due to gravity is g
    13·1 answer
  • A vertical wire carries current in the upward direction. An electron is traveling parallel to the wire. What is the angle ααalph
    13·1 answer
  • A battery powers a circuit for a small noisy fan. The fan’s motor gets warm as it turns. What energy transformations are taking
    6·2 answers
  • Describe each class of lever and explain to characteristics of each
    5·2 answers
  • Students use a stretched elastic band to launch carts of known mass horizontally on a track. The elastic bands exert a force F,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!