answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
2 years ago
8

The δe of a system that releases 12.4 j of heat and does 4.2 j of work on the surroundings is __________ j.

Physics
1 answer:
Vedmedyk [2.9K]2 years ago
5 0

The answer for this problem is clarified through this, the system is absorbing (+). And now see that it uses that the SURROUNDINGS are doing 84 KJ of work. Any time a system is overshadowing work done on it by the surroundings the sign will be +. So it's just 12.4 KJ + 4.2 = 16.6 KJ.

You might be interested in
Study the free body diagram above. Which scenario below can best be described with this free body diagram? A. a cup is at rest o
vekshin1

Answer: D

Explanation:

5 0
2 years ago
The Lamborghini Huracan has an initial acceleration of 0.80g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode al
irina [24]

Answer:

a = 15.1 g

Explanation:

The relation between mass and acceleration is given by :

m\propto \dfrac{1}{a}

If a₁ = 0.80g, m₁ = 1510 kg, m₂ = 80 kg, we need to find a₂

So,

\dfrac{m_1}{m_2}=\dfrac{a_2}{a_1}\\\\a_2=\dfrac{a_1m_1}{m_2}\\\\a_2=\dfrac{0.8g\times 1510}{80}\\\\a_2=15.1g

So, the car's acceleration would be 15.1 g.

6 0
1 year ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
2 years ago
g A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0
Margarita [4]

Answer:

Explanation:

If a particle move with time and expressed according to the formula:

f(t) = 0.01t⁴ − 0.03t³

a) Velocity is the change in motion of the particle with respect to time and it is expressed as;

v(t) =\frac{d(f(t))}{dt}

v(t) = 4(0.01)t^{4-1} - 3(0.03)t^{3-1}\\v(t) = 0.04t^3 - 0.09t^2

Hence the velocity of the particle at time t is v(t) = 0.04t^3 - 0.09t^2

b) To calculate the velocity after 1 second, we will substitute t = 1 into the function v(t) in (a) as shown:

v(t) = 0.04t^3 - 0.09t^2\\v(1) = 0.04(1)^3 - 0.09(1)^2\\v(t) = 0.04 - 0.09\\v(t) = -0.05

Hence the velocity after 1second is -0.05

c) The particle is at rest when when the time is zero.

Initially, the body is not moving and the time during this time is 0. Hence the particle is at rest when t = 0second

6 0
1 year ago
An object is dropped from a 15 m ledge. How fast it is moving just before it hits the ground?
Sergeeva-Olga [200]
By v^2 = u^2 + 2gh 
v^2 = 0 + 2 x 9.8 x 15
v = √294
v = 17.15 m/s 
4 0
2 years ago
Read 2 more answers
Other questions:
  • What is the minimum speed with which he’d need to run off the edge of the cliff to make it safely to the far side of the river?
    5·2 answers
  • The diameters of bolts produced by a certain machine are normally distributed with a mean of 0.30 inches and a standard deviatio
    14·1 answer
  • An object executes simple harmonic motion with an amplitude A. (Use any variable or symbol stated above as necessary.) (a) At wh
    9·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • What frequency is received by a person watching an oncoming ambulance moving at 110 km/h and emitting a steady 800-Hz sound from
    15·1 answer
  • The amusement park ride shown above takes riders straight up a tall tower and then releases an apparatus holding seats. This app
    6·1 answer
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • . A lightbulb with a resistance of 2.9 ohms is operated using a 1.5-volt battery. At what rate is
    6·2 answers
  • The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
    13·1 answer
  • A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!