answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
exis [7]
1 year ago
15

Car B is following Car A and has a greater speed than Car A. the two cars are moving in a straight line and in the same directio

n, and have the same mass. in situation one, Car A is traveling at 10 mph and car B at 20 mph. in situation 2, car A is traveling at 30 mph and car B at 40 mph. assuming a perfectly inelastic collision in which the cars stick together after the collision, what will be true?
Physics
1 answer:
ElenaW [278]1 year ago
7 0

Answer:

Collision force will be same in both the cases.

Explanation:

A perfectly inelastic collision is said to take place  when a system loses the amount of its Kinetic Energy at its maximum. In a perfectly inelastic collision,  the colliding particles stick to each other. In such a collision, kinetic energy is lost by combining the two bodies with each other.

In situation 1:

Speed of Car A, v_{A} = 10 mph

Speed of Car B, v_{B} = 20 mph

Relative speed of car A and car B, v = v_{b} - v_{a} = 10 m/s

Now, in the situation 2:

Speed of car A, v_{A} = 30 mph

Speed of car B, v_{B} = 40 mph

Relative speed of car A and car B, v = v_{b} - v_{a} = 10 m/s

Therefore, Car A and Car B both have the same relative speed, v = 10 m/s

You might be interested in
The weights of a large number of miniature poodles are approximately normally distributed with a mean of 99 kilograms and a stan
Karo-lina-s [1.5K]

Answer:

See explanation below

Explanation:

As I say in the comments, the question is incomplete, however, I will try to answer this by using data that I found on another site.

This is the part of the question that is not here:

If measurements are recorded to the nearest

tenth of a kilogram, find the fraction of these poodles

with weights

(a) over 9.5 kilograms;

(b) of at most 8.6 kilograms;

So, assuming a mean of 8 kg, and 0.9 of standard deviation, let X represents the weight of the poodles

The expression to calculate the fraction of poodle needed is:

Z = X - u / d

u: weight of the large number of poodle

d: standard deviation

Replacing data of a) wer have:

Z = 9.5 - 8 / 0.9

Z = 1.67

With this value, we need to take the value of Z, and see the area under the curve of standard deviation (see table attached)

Therefore:

P (X > 9.5) = P(Z > 1.67) = 0.5 - P (Z < 1.67) = 0.5 - 0.4525 = 0.0475

b) In this part, is the same as part a) so:

Z = 8.6 - 8 / 0.9 = 0.67

The value for area in the curve is 0.2486 so:

P = 0.5 + 0.2486 = 0.7486

Hope this helps

8 0
2 years ago
When a car is 100 meters from its starting position traveling at 60.0 m/s., it starts braking and comes to a stop 350 meters fro
NISA [10]
Remember your kinematic equations for constant acceleration. One of the equations is x_{f} =  x_{i} +  v_{i}(t) + \frac{1}{2} at^{2}, where x_{f} = final position, x_{i} = initial position, v_{i} = initial velocity, t = time, and a = acceleration. 

Your initial position is where you initially were before you braked. That means x_{i} = 100m. You final position is where you ended up after t seconds passed, so x_{f} = 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was v_{i} = 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
350\:m = 100\:m + (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\&#10;250\:m = (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\&#10;250\:m = 498\:m +34.445\:s^{2}(a)\\&#10;-248\:m = 34.445\:s^{2}(a)\\&#10;a \approx -7.2 \: m/s^{2}

Your acceleration is approximately -7.2 \: m/s^{2}.
4 0
2 years ago
Which formula is used to find fluctuation of the shape of body
Sladkaya [172]

Answer:

varn=n1+1ehvkT–1

Explanation:

This is Einstein's equation.

5 0
1 year ago
A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equa
love history [14]

Answer:

I = 16 kg*m²

Explanation:

Newton's second law for rotation

τ = I * α   Formula  (1)

where:

τ : It is the moment applied to the body.  (Nxm)

I :  it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)

α : It is angular acceleration. (rad/s²)

Kinematics of the wheel

Equation of circular motion uniformly accelerated :  

ωf = ω₀+ α*t  Formula (2)

Where:  

α : Angular acceleration (rad/s²)  

ω₀ : Initial angular speed ( rad/s)  

ωf : Final angular speed ( rad

t : time interval (rad)

Data  

ω₀ = 0

ωf = 1.2 rad/s

t = 2 s

Angular acceleration of the wheel  

We replace data in the formula (2):  

ωf = ω₀+ α*t

1.2= 0+ α*(2)

α*(2) = 1.2

α = 1.2 / 2

α = 0.6 rad/s²

Magnitude of the net torque (τ )

τ = F *R

Where:

F  = tangential force (N)

R  = radio (m)

τ = 80 N *0.12 m

τ = 9.6 N *m

Rotational inertia of the wheel

We replace data in the formula (1):

τ = I * α

9.6 = I *(0.6 )

I = 9.6 / (0.6 )

I = 16 kg*m²

8 0
1 year ago
Suppose you're on a hot air balloon ride, carrying a buzzer that emits a sound of frequency f. If you accidentally drop the buzz
Olin [163]

Answer:

The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.

Explanation:

1) <u>Effect on Frequency </u>

According to Doppler's effect of sound we have

for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

f_{app}=\frac{c-v_{rec}}{c+v_{s}}\times f_{original}

where

c = speed of sound in air

v_{rec} is the velocity of observer of sound

v_{s} is the velocity of source of sound

f_{o} is the original frequency of sound

As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.

2) <u>Effect on Intensity:</u>

At a distance 'r' from source emitting a wave of Power 'P' is given by

I=\frac{P}{4\pi r^{2}}

As we see on increasing 'r' intensity of sound decreases.

3 0
2 years ago
Other questions:
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • Determine the maximum weight of the bucket that the wire system can support so that no single wire develops a tension exceeding
    7·1 answer
  • Alonzo sprints for 500 meters along a straight track during a race. After crossing the finish line, he to walks back along the t
    14·2 answers
  • Which are methods of reducing exposure to ionizing radiation? Check all that apply.
    5·2 answers
  • 1. Two identical bowling balls of mass M and radius R roll side by side at speed v0 along a flat surface. Ball 1 encounters a ra
    11·1 answer
  • Suppose that an owner of the same dog breed has also taken some measurements. They notice that the surface area of the dog has i
    8·1 answer
  • Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C wit
    15·1 answer
  • A rope exerts a force F on a 20.0-kg crate. The crate starts from rest and accelerates upward at 5.00 m/s2 near the surface of t
    9·1 answer
  • The distance between twin satellites that were originally 150 meters apart are now 300 meters apart. Which best describes the gr
    14·1 answer
  • The2 archer uses a force of 120 N. The force acts on an area of 0.5 cm2 on the archer's fingers. . Calculate the pressure on the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!