answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
1 year ago
15

A 15.0 g bullet traveling horizontally at 865 m>s passes through a tank containing 13.5 kg of water and emerges with a speed

of 534 m>s. What is the maximum temperature increase that the water could have as a result of this event
Physics
1 answer:
Murrr4er [49]1 year ago
3 0

Answer:

The rise in temperature is 0.06 K.

Explanation:

mass of bullet, m = 15 g

initial speed, u = 865 m/s

final speed, v = 534 m/s

mass of water, M = 13.5 kg

specific heat of water, c = 4200 J/kg K

The change in kinetic energy

K = 0.5 m(u^2 - v^2)\\\\K = 0.5\times 0.015\times (865^2-534^2)\\\\K = 3473 J

According to the conservation of energy, the change in kinetic energy is used to heat the water.

K = m c T

where, T is the rise in temperature.

3473 = 13.5 x 4200 x T

T = 0.06 K

You might be interested in
A charged wire of negligible thickness has length 2L units and has a linear charge density λ. Consider the electric field E-vect
Stels [109]

Answer:

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

Explanation:

Given that

Length= 2L

Linear charge density=λ

Distance= d

K=1/(4πε)

The electric field at point P

E=2K\int_{0}^{L}\dfrac{\lambda }{r^2}dx\ sin\theta

sin\theta =\dfrac{d}{\sqrt{d^2+x^2}}

r^2=d^2+x^2

So

E=2K\lambda d\int_{0}^{L}\dfrac{dx }{(x^2+d^2)^{\frac{3}{2}}}

Now by integrating above equation

E=2K\lambda d\dfrac{L }{d^2\sqrt{L^2+d^2}}

4 0
1 year ago
An object is thrown with an initial speed v near the surface of Earth. Assume that air resistance is negligible and the gravitat
IgorLugansk [536]

Answer:

E. downward and constant

Explanation:

Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.

For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.

3 0
1 year ago
Read 2 more answers
An ambulance moving at 42 m/s sounds its siren whose frequency is 450 hz. a car is moving in the same direction as the ambulance
Korvikt [17]
(a) Since the ambulance and the car are moving one relative to each other, we have to use the general formula of the Doppler effect, which gives us the shift of the frequency of the siren as heard by an observer in the car:
f'=( \frac{v+v_o}{v+v_s} )f
where
f' is the apparent frequency as heard by the observer in the car
v is the velocity of the wave 
v_o is the velocity of the observer (positive if it is moving towards the source, negative if it is moving away)
v_s is the velocity of the source (positive if the source is moving away from the observer, negative if is is moving towards it)
f is the real frequency of the sound

In the first part of the problem:
v=343 m/s (speed of the sound wave)
v_o =-25 m/s (the car is moving away from the ambulance)
v_s = -42 m/s (the ambulance is moving towards the car)
f=450 Hz (original frequency of the sound)

If we plug the numbers into the formula, we find
f'=( \frac{343 m/s-25 m/s}{343 m/s-42 m/s} )(450 Hz)=475 Hz

b) This time, the ambulance passes the car, so the ambulance is now moving away from the car; this means that v_s must be positive:
v_s=+42 m/s
Moreover, the car is now moving towards the ambulance, so we should reverse also the sign of v_o:
v_o=+25 m/s
All the other data do not change, so if we use the same formula as before, we find
f'=( \frac{343 m/s+25 m/s}{343 m/s+42 m/s} )(450 Hz)=430 Hz
8 0
1 year ago
An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
Aneli [31]

We are given: Final velocity (v_f)=20 m/s .

Time t= 2.51 s and

distance s = 82.9 m.

We know, equation of motion

v_f = v_i + at.

Let us plug values of final velocity, and time in above equation.

20=v_i+a(2.51)

20=v_i+2.51a

Subtracting 2.51a from both sides, we get

20-2.51a=v_i  -----------equation(1)

Using another equation of motion

v_f-v_i=2as

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.

We get,

20-(20-2.51a)=2*a(82.90)

Now, we need to solve it for a.

20-20+2.51a=165.8a.

-163.29a=0

a=0.

So, the acceleration would be 0 m/s^2.


5 0
1 year ago
A person wants to lose weight by "pumping iron". The person lifts an 80 kg weight 1 meter. How many times must this weight be li
statuscvo [17]

Answer:

37357 sec  

or 622 min

or 10.4 hrs

Explanation:

GIVEN DATA:

Lifting weight 80 kg

1 cal = 4184 J

from information given in question we have

one lb fat consist of 3500 calories = 3500 x 4184 J

= 14.644 x 10^6 J  

Energy burns in 1 lift = m g h

                                  = 80 x 9.8 x 1 = 784 J

lifts required = \frac{(14.644 x 10^6)}{784}

                      = 18679

from the question,

1 lift in 2 sec.

so, total time = 18679 x 2 = 37357 sec  

or 622 min

or 10.4 hrs

3 0
1 year ago
Other questions:
  • Make a diagram showing the forces acting on a coasting bike rider traveling at 25km/h on a flat roadway.
    14·2 answers
  • The famous leaning tower of pisa doesn't topple over because its center of gravity is
    14·1 answer
  • If 10.0 liters of oxygen at stp are heated to 512 °c, what will be the new volume of gas if the pressure is also increased to 15
    15·1 answer
  • Cheetahs, the fastest of the great cats, can reach 45 mph in 2.0 sec starting from rest. Assuming that they have constant accele
    6·1 answer
  • A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. After a fish takes the bait, the resulting force in the
    7·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
    10·1 answer
  • A 0.65-T magnetic field is perpendicular to a circular loop of wire with 73 turns and a radius of 18 cm. If the magnetic field i
    5·1 answer
  • A 4.0 g string, 0.36 m long, is under tension. The string produces a 500 Hz tone when it vibrates in the third harmonic. The spe
    13·1 answer
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!