Gravitational potential energy is caused when an object is resting above the ground. It is released when the object is falling, not by burning substances.
Answer:
Explanation:
Let L be the length of the wire.
velocity of pulse wave v = L / 24.7 x 10⁻³ = 40.48 L m /s
mass per unit length of the wire m = 14.5 x 10⁻⁶ x 10⁻³ / 2 x 10⁻² kg / m
m = 7.25 x 10⁻⁷ kg / m
Tension in the wire = Mg , M is mass hanged from lower end.
= .4 x 9.8
= 3.92 N
expression for velocity of wave in the wire
, T is tension in the wire , m is mass per unit length of wire .
40.48 L = 
1638.63 L² = 3.92 / (7.25 x 10⁻⁷)
L² = 3.92 x 10⁷ / (7.25 x 1638.63 )
L² = 3299.64
L = 57.44 m /s
Complete Question
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
I = 1.2 A at time 5 secs.
Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.
Answer:
The charge is 
Explanation:
From the question we are told that
The diameter of the wire is 
The radius of the wire is 
The resistivity of aluminum is 
The electric field change is mathematically defied as

Generally the charge is mathematically represented as

Where A is the area which is mathematically represented as

So

Therefore

substituting values
![Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5Cint%5Climits%5E%7Bt%7D_%7B0%7D%20%7B%20%5B%200.0004t%5E2%20-%200.0001t%20%2B0.0004%5D%20%7D%20%5C%2C%20dt)
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%20t%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
From the question we are told that t = 5 sec
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%205%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004%285%29%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20%285%29%5E2%7D%7B2%7D%20%2B0.0004%285%29%5D%20%7D)

Answer:
a) W=2.425kJ
b) 
c) 
d) Q=-2.425kJ
Explanation:
a)
First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)
The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

Where:
W=work done [J]
F= force applied [N]
d= distance [m]
In this case since it will be a vertical movement, the force is calculated like this:
F=mg
and the distance will be the height
d=h
so the formula gets the following shape:

so now e can substitute:

which yields:
W=2.425kJ
b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

Where:
Q= heat transferred
m=mass
=specific heat
= Final temperature.
= initial temperature.
So we can solve the forula for the final temperature so we get:

So now we can substitute the data we know:

Which yields:

d)
For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

Answer:
Part A. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull.
Part B. The magnitude of normal force acting on the suitcase is equal to the sum of the weight of the suitcase and the man.
Explanation:
Part A. This is because when the man pulls on the suit upwards, he exerts a force in the upward direction. This takes part of the force of weight of the suitcase and decreases the force the suitcase is exerting on the ground. Thus, the normal force (force exerted by suitcase on the ground) also decreases by the same force as the pull.
Part B. The statements for this part were not given in the question, but the answer reflects what is going to happen in that scenario. Since the man sits on the suitcase, the total weight acting on the ground through the suitcase is that of the suitcase plus the man. Since this force (acting on the ground) is normal force, the statement given in the answer is correct.