answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
2 years ago
11

A celebrating student throws a water balloon horizontally from a dormitory window that is 50 m above the ground. It hits the gro

und at a point 60 m from the building without appreciable air resistance.(a) What will be the horizontal component of the velocity of the balloon just before it hits the ground? (b) What will be the magnitude of the vertical velocity of the balloon just before it hits the ground?

Physics
1 answer:
Contact [7]2 years ago
4 0

Answer:

a) The horizontal velocity of the balloon just before it hits the ground is 6 m/s

b) The magnitude of the vertical velocity of the balloon just before it hits the ground is 98 m/s.

Explanation:

Hi there!

The velocity and position vectors of the water balloon are given by the following equations:

r =(x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

v =(v0x, v0y + g · t)

where:

r = position vector at time t.

x0 = initial horizontal position.

v0x = initial horizontal velocity.

t = time.

y0 = initial vertical position.

v0y = initial vertical position.

g = acceleration due to gravity (-9.8 m/s² considering the upward position as positive) .

v = velocity vector at time t.

a) Please, see the attached figure for a graphic description of the problem.

Considering the origin of the frame of reference as the point of launch, notice that the position vector when the balloon hits the ground is

r1 = (60, -50) m

Then:

r1x = 60 m = v0x · t

r1y = -50 m = 1/2 · (-9.8 m/s²) · t²

(notice that the initial vertical velocity is zero, see figure).

Solving r1y for t:

(-50 m · 2) / -9.8 m/s² = t²

t = 10 s

Now, let´s replace t in the r1x equation and solve it for the horizontal component of the velocity:

60 m = v0x · 10 s

v0x = 60 m / 10 s

v0x = 6 m/s

The initial horizontal component of the velocity is 6 m/s. This velocity is constant because there is no air resistance. Then, just before the balloon hits the ground, it will have a horizontal velocity of 6 m/s.

b) To calculate the vertical component of the velocity when the balloon hits the ground, let´s use the equation of the vertical component of the velocity:

v1y = v0y + g · t

Since v0y = 0

v1y = -9.8 m/s² · (10 s) = -98 m/s

The magnitude of the vertical velocity of the balloon when it hits the ground is 98 m/s.

You might be interested in
A 30.0-kg child sits on one end of a long uniform beam having a mass of 20.0 kg, and a 40.0-kg child sits on the other end. The
qaws [65]

let the length of the beam be "L"

from the diagram

AD = length of beam = L

AC = CD = AD/2 = L/2

BC = AC - AB = (L/2) - 1.10

BD = AD - AB = L - 1.10

m = mass of beam = 20 kg

m₁ = mass of child on left end = 30 kg

m₂ = mass of child on right end = 40 kg

using equilibrium of torque about B

(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)

30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)

L = 1.98 m

4 0
2 years ago
Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
Svetradugi [14.3K]

Answer:

If they are metallic spheres  they are connected to earth and a charged body approaches

non- metallic (insulating) spheres in this case are charged by rubbing

Explanation:

For fillers, there are two fundamental methods, depending on the type of material.

If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.

If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.

8 0
2 years ago
A tuning fork produces a sound with a frequency of 256 hz and a wavelength in air of 1.33 m. find the speed of sound in the vici
aalyn [17]
<span>We can think this through intuitively. A frequency of 256 Hz means that the wave has 256 cycles each second. If the wavelength is 1.33 meters, then there are 256 of them each second. Therefore, we just need to multiply the wavelength by the frequency to find the speed of sound. (Note that the units Hz = 1 / s) v = (frequency) x (wavelength) v = (256 Hz) x (1.33 m) v = 340.5 m/s The speed of sound in the vicinity of the fork is 340.5 m/s</span>
4 0
2 years ago
Scotesia swims from the north end to the south end of a 50.0 m pool in 20.0 s. As she begins to make the return trip , Sean, who
slega [8]

Answer:

a) 2.5m/s

b) 0.91m/s

c) 0m/s

Explanation:

Average velocity can be said to be the ratio of the displacement with respect to time.

Average speed on the other hand is the ratio of distance in relation to time

Thus, to get the average velocity for the first half of the swim

V(average) = displacement of first trip/time taken on the trip

V(average) = 50/20

V(average) = 2.5m/s

Average velocity for the second half of the swim will be calculated in like manner, thus,

V(average) = 50/55

V(average) = 0.91m/s

Average velocity for the round trip will then be

V(average) = 0/75, [50+25]

V(average) = 0m/s

3 0
2 years ago
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
2 years ago
Other questions:
  • A frog hops 5m east and 2m north. What is the magnitude of the frogs total displacement in m?
    5·1 answer
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • Two marbles are launched at t = 0 in the experiment illustrated in the figure below. Marble 1 is launched horizontally with a sp
    12·2 answers
  • For a flourish at the end of her act, a juggler tosses a single ball high in the air. She catches the ball 3.3 s later at the sa
    7·1 answer
  • Whose research showed that atoms consist of small positively charged nuclear centers and lots of empty space populated by electr
    13·1 answer
  • A and B, move toward one another. Object A has twice the mass and half the speed of object B. Which of the following describes t
    13·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • Table C. The Effects of a Magnet on Electric Current
    11·1 answer
  • Come si compongono due forze che agiscono in diversi punti di un corpo rigido? Oof
    6·1 answer
  • An object weighs 980N on the earth’s surface (i) What is its mass? (ii) If the same object weighs 360N on another planet, find t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!