Answer:
They had the same speed.
Explanation:
It won't be velocity, because velocity is a vector quantity. Speed is scalar.
1km per 5 mins
PLEASE VERIFY WITH SOMEONE I MAY BE INCORRECT
is the best estimate of the density of the air on the planet.
Given:
The mass of the conical flask with stopper is 457.23 grams and the volume is
.
Mass of conical flask and a stopper after removing the air is 456.43 g
To find:
The density of the air on the planet.
Solution;
Mass of the conical flask and stopper with air on the planet= 457.23 g
Mass of conical flask with a stopper and without air on the planet = 456.43 g
Mass of the air in the conical flask on the planet =m

The volume of the conical flask = 
The volume of the air in the conical flask = 

The density of the air on the planet = d

is the best estimate of the density of the air on the planet.
Learn more about density here:
brainly.com/question/952755?referrer=searchResults
brainly.com/question/14373997?referrer=searchResults
Answer:
210.3 degrees
Explanation:
The net force exerted on charge A = 59.5 N
Use the x and y coordinates of net force to get the direction
arctan (y/x)
Answer:
How much energy does it take to melt a 16.87 g ice cube? ΔHfus = 6.02 kJ/mol How much energy does it take to melt a 16.87 g ice cube? = 6.02 kJ/mol
A. 108 kJ
B. 102 kJ
C. 5.64 kJ
D. 936 kJ
E. none of the above
<em>5.64 kJ</em>
Explanation:
The Heat of fusion is the heat energy required to dissolve a given mass of ice at melting point.
<h3>
Step by Step Calculation</h3>
The heat energy required to dissolve ice can be calculated using the expression below;
Q = ΔH
x m ...............................................1
where Q is the heat energy required;
ΔH
is the heat of fusion for ice;
m is the mole
All the parameters above are provided in the question except m, so to get m we use the molar mass of water (also for ice) which is 18.01528 g/mol
.
<em>This means that 18.01528 g of ice is contained in one mole, therefore the mole for 16.87 g of ice is given as;</em>

m = 0.9364 mole of ices
Now the parameters are complete, we are given;
ΔH
= 6.02 kJ/mol
m = 0.9364 mol
Q =?
Substituting into equation 1, we have
Q = 6.02 kJ/mol x 0.9364 mol
Q = 5.64 kJ
<em>Therefore, the energy required to melt 16.87 g of ice is 5.64 kJ</em>