Answer:
The activation energy for this reaction, Ea = 159.98 kJ/mol
Explanation:
Using the Arrhenius equation as:

Where, Ea is the activation energy.
R is the gas constant having value 8.314 J/K.mol
K₂ and K₁ are the rate constants
T₂ and T₁ are the temperature values in kelvin.
Given:
K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K
K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K
Applying in the equation as:

Solving for Ea as:
Ea = 159982.23 J /mol
1 J/mol = 10⁻³ kJ/mol
Ea = 159.98 kJ/mol
not enough information is given to determine the velocity of the object at time to=0.00s
Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)
Answer:
The height of the wave is determined by the wind strength and fetch.
Explanation:
The height of the wave is determined by the wind strength and fetch.
The more the strength and the more the fetch size the more will be the height of the wave.
Remember as the wave approaches the coast its wavelength decreases and the wave height increases, whereas when the wave goes away from the coast its wavelength increases and height decreases.
Answer:

Explanation:
First of all, we need to find the pressure exerted on the sphere, which is given by:

where
is the atmospheric pressure
is the water density
is the gravitational acceleration
is the depth
Substituting,

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m
So the total area of the sphere is

And so, the inward force exerted on it is
