answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
2 years ago
8

A turntable that is initially at rest is set in motion with a constant angular acceleration α. What is the magnitude of the angu

lar velocity of the turntable after it has made one sommer (irs359) – Rotation Quiz 1 – craig – (2019-1A AP12) 2 complete revolution? 1. k~ωk = 2 π α 2. k~ωk = √ 2 π α 3. k~ωk = 4 π α 4. k~ωk = √ 2 α 5. k~ωk = 2 α 6. k~ωk = 2 √ π α
Physics
2 answers:
bekas [8.4K]2 years ago
6 0

Explanation:

If the turntable starts from rest and is set in motion with a constant angular acceleration α. Let \omega is the angular velocity of the turntable. We know that the rate of change of angular velocity is called the angular acceleration of an object. Its formula is given by :

\alpha =\dfrac{\omega_f-\omega_i}{t}

\alpha =\dfrac{\omega-0}{t}

\alpha =\dfrac{\omega}{t}

t=\dfrac{\omega}{\alpha }............(1)

Using second equation of kinematics as :

\theta=\omega_i t+\dfrac{1}{2}\alpha t^2

\theta=\dfrac{1}{2}\alpha t^2

Using equation (1) in above equation

\theta=\dfrac{1}{2}\times \dfrac{\omega^2}{\alpha }

In one revolution, \theta=4\pi (in 2 revolutions)

4\pi =\dfrac{1}{2}\times \dfrac{\omega^2}{\alpha }

\omega=\sqrt{8\pi \alpha}

\omega=2\sqrt{2\pi \alpha}

Hence, this is the required solution.

shtirl [24]2 years ago
4 0

Answer:

The answer is: w=\sqrt{4\pi \alpha }

Explanation:

Please look at the solution in the attached Word file.

Download docx
You might be interested in
The first-order rearrangement of CH3NC is measured to have a rate constant of 3.61 × 10–15 s–1 at 298 K and a rate constant of 8
netineya [11]

Answer:

The activation energy for this reaction, Ea = 159.98 kJ/mol

Explanation:

Using the Arrhenius equation as:

ln\frac {K_2}{K_1}=-\frac {E_a}{R}\times (\frac {1}{T_2}-\frac {1}{T_1})

Where, Ea is the activation energy.

R is the gas constant having value 8.314 J/K.mol

K₂ and K₁ are the rate constants

T₂ and T₁ are the temperature values in kelvin.

Given:

K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K

K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K

Applying in the equation as:

ln\frac {8.66\times 10^{-7}}{3.61\times 10^{-15}}=-\frac {E_a}{8.314}\times (\frac {1}{425}-\frac {1}{298})

Solving for Ea as:

Ea = 159982.23 J /mol

1 J/mol = 10⁻³ kJ/mol

Ea = 159.98 kJ/mol

7 0
2 years ago
The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
jolli1 [7]

not enough information is given to determine the velocity of the object at time to=0.00s

3 0
2 years ago
A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
beks73 [17]

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

3 0
2 years ago
Read 2 more answers
010) Identify the true statement. Group of answer choices The height of waves is determined by wind strength and fetch. Wave bas
AlekseyPX

Answer:

The height of the wave is determined by the wind strength and fetch.

Explanation:

The height of the wave is determined by the wind strength and fetch.

The more the strength and the more the fetch size the more will be the height of the wave.

Remember as the wave approaches the coast its wavelength decreases and the wave height increases, whereas when the wave goes away from the coast its wavelength increases and height decreases.

7 0
2 years ago
James Cameron piloted a submersible craft to the bottom of the Challenger Deep, the deepest point on the ocean's floor, 11,000 m
Over [174]

Answer:

4.1\cdot 10^8 N

Explanation:

First of all, we need to find the pressure exerted on the sphere, which is given by:

p=p_0 + \rho g h

where

p_0 =1.01\cdot 10^5 Pa is the atmospheric pressure

\rho = 1000 kg/m^3 is the water density

g=9.8 m/s^2 is the gravitational acceleration

h=11,000 m is the depth

Substituting,

p=1.01\cdot 10^5 Pa + (1000 kg/m^3)(9.8 m/s^2)(11,000 m)=1.08\cdot 10^8 Pa

The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m

So the total area of the sphere is

A=4 \pi r^2 = 4 \pi (0.55 m)^2=3.8 m^2

And so, the inward force exerted on it is

F=pA=(1.08\cdot 10^8 Pa)(3.8 m^2)=4.1\cdot 10^8 N

8 0
2 years ago
Read 2 more answers
Other questions:
  • A hockey puck with a mass of 0.16 kg is sitting at rest on a frozen pond. Suddenly, the wind begins to blow, accelerating the pu
    6·2 answers
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • Uranus has an orbital period of 84.07 years. In two or more complete sentences, explain how to calculate the average distance fr
    7·2 answers
  • What is the atomic number z of 73li?
    12·2 answers
  • A highly charged piece of metal (with uniform potential throughout) tends to spark at places where the radius of curvature is sm
    12·1 answer
  • When you skid to a stop on your bike, you can significantly heat the small patch of tire that rubs against the road surface. Sup
    9·1 answer
  • A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at In a few mi
    5·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
  • Tire marks left by a decelerating car were 500. m long. If the car’s acceleration was -8.00 m/s2, what was its initial velocity?
    7·1 answer
  • A 50kg boy stands on rough horizontal ground. The coefficient
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!