B.
The child is too old to be gaining something from the screen time.
There are already 2 givens, hence we can do direct substitution to get the answer. To make the process simpler, derive the distance formula from the Work formula.
Work = Force x Distance
Distance =

Work is 450J while the force is 150N hot tub
To get the proper units, get the equivalent of Joule to eliminate newton. A joule Is equal to 1 N-m
Distance =

Distance = 3m
Hence, the hot tub is lifted 3 meters.
When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
Answer:
The maximum speed of the car at the bottom of that drop is 26.34 m/s.
Explanation:
Given that,
The maximum vertical distance covered by the roller coaster, h = 35.4 m
We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :



v = 26.34 m/s
So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.
Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230