Answer: Thermal comductivity (K) is 3.964x 10 ^-3 W/m.k
Explanation:
Thermal comductivity K = QL/A∆T
Q= Amount of heat transferred through the material in watts = 75W
L= Distance between two isothermal planes = 0.740mm
A= Area of the surface in square metres = 2m^2
∆T= Temperature change = (37-30) °C.
Solving this : K =( 75 x 0.740 x 10^-3)/ 2 x (37-30)
K = 3.964x 10 ^-3 W/m.k
Answer:bowling ball has greater kinetic energy
Explanation:
Kinetic energy of bowling ball:
mass=m=5kg
Velocity=v=6m/s
Kinetic energy =ke
Ke=0.5 x m x v x v
Ke=0.5 x 5 x 6 x 6
Ke=90J
Kinetic energy of ship:
mass=m=120000kg
velocity=v=0.02m/s
Ke=0.5 x m x v x v
Ke=0.5 x 120000 x 0.02 x 0.02
Ke=24J
Answer:
e*P_s = 11 W
Explanation:
Given:
- e*P = 1.0 KW
- r_s = 9.5*r_e
- e is the efficiency of the panels
Find:
What power would the solar cell produce if the spacecraft were in orbit around Saturn
Solution:
- We use the relation between the intensity I and distance of light:
I_1 / I_2 = ( r_2 / r_1 ) ^2
- The intensity of sun light at Saturn's orbit can be expressed as:
I_s = I_e * ( r_e / r_s ) ^2
I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2
I_s = 11 W / e*a
- We know that P = I*a, hence we have:
P_s = I_s*a
P_s = 11 W / e
Hence, e*P_s = 11 W
If we assume also that the temperature of the air does not change, we can use Boyle's Law:
p₁V₁ = p₂V₂
Now, we know:
p₁ = 100kPa
V₂ = 100cm³ (the volume of the tyre)
V₁ = 120cm³ (becuse the air is contained inside the tyre AND the pump)
We can solve for p₂:
p₂ = (p₁V₁)/V₂
= (100×120)/100
= 120kPa
Therefore your answer is: 120kPa
Answer:195 J
Explanation:
Given
mass of ball 
ball leaves the hand with 
maximum height reached by ball 
Initial Mechanical energy when ball just leaves the hand


considering hand to be datum so h_1=0[/tex]
so Potential energy at ground is zero


Mechanical Energy at highest point

at highest Point velocity is zero



Decrease in Mechanical energy

