Kinetic energy<span> is the </span>energy<span> of motion. An object that has motion - whether it is vertical or horizontal motion - has </span>kinetic energy<span>. It is expressed as:
KE = mv^2 /2
720 = 10.0v^2 /2
v = 12 m/s
Hope this answers the question. Have a nice day.</span>
We are missing an important piece of information needed to answer this question: the number of kcal Charles losses per day. However, we can come up with a general equation in which kcal/day is the only independent variable.
We know that it takes 3500 kcal to lose one pound. To lose 5 pounds, Charles needs to lose 5 x 3500 kcal = 17,500 kcal.
To find how many days it takes Charles to lose 17,500 kcal (5 pounds), we must divide that amount by the number of kcal Charles loses per day.
Here is the equation to calculate that number
Number of days= 17500 / (kcal per day)
If given calories, remember that 1000 calories = 1 kcal, and .001 kcal = 1 cal
Answer:
a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2 = 239.6 N,
b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm
Explanation:
Given that:
γ= 9.5 kN/m³ = 9500N/m3
b = 6 inches = 0.1524 m
t = 0.0013 mm
d = 2 inches = 0.0508 m
n = 1750 rpm

L = 9 ft = 2.7432 m
Ks = 1.25
g = 9.81 m/s²
a)







b)


dip = 
A) 1153 N/m
We can find the spring constant by using Hooke's law:

where
F is the force applied to the spring
k is the spring constant
x is the displacement of the spring
In this problem, a fish of mass m = 4.0 kg is hanging on the spring, so the force applied is the weight of the fish:

and the displacement of the spring is:

so, the spring constant is

B) 16.8 cm
In this case, a fish of mass
m = 8.0 kg
is hanging on the spring. Therefore, the force applied to the spring is

So we can find the displacement of the spring:

And since the equilibrium length of the spring is

the new length of the spring will be

Answer:
See below explanation
Explanation:
The correspondent chemical reaction for copper carbonate decomposed by heat is:
CuCO₃ (s) → CuO (s) + CO₂ (g)
Considering all molar mass (MM) for each element ( we consider rounded numbers) :
MM CuCO₃ = 123 g/mol
MM CuO = 79 g/mol
MM CO₂ = 44 g/mol
Statement mentions that scientis heated 123.6 g of CuCO₃ (almost a MM), until a black residue is obtained, which weights 79.6 g : this solid residue is formed by CuO, and the remaining mass (approximatelly 44 g) belongs to teh second product, this is, CO₂; as it is a gas compund, it is not certainly included on the solid residue.
So, law of conservation mass is true for this case, since: 123.6 g = 79.6 g + 44 g. As explained, on the solid residue, we don not include the 44 g, which "escaped" from our system, since it is a gas compound (CO₂)