answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
2 years ago
6

A nonlinear spring is used to launch a toy car. The car is pushed against the spring, compressing the spring 2.5 cm. The force t

he spring exerts on the car is given by the equation F=−Kx2, where K=5000 Nm2. The potential energy stored in the spring when the car is pushed against it is most nearly:________________
Physics
1 answer:
dybincka [34]2 years ago
5 0

Answer:

1.56 J

Explanation:

given,

Spring compression, x = 2.5 cm

Force exerts by the spring,

F = - k x

k = 5000 N/m

Potential energy stored = ?

energy stored in the spring

PE = \dfrac{1}{2}kx^2

PE = \dfrac{1}{2}\times 5000\times 0.025^2

PE = 1.56 J

Hence, the potential energy stored in the car is equal to 1.56 J.

You might be interested in
A particular cylindrical bucket has a height of 36.0 cm, and the radius of its circular cross-section is 15 cm. The bucket is em
Sergeeva-Olga [200]

Answer:

a. 0.000002 m

b. 0.00000182 m

Explanation:

36 cm = 0.36 m

15 cm = 0.15 m

a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

P = \ro g h = 1000 * 10 * 20 = 200000 Pa

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

P_1V_1 = P_2V_2

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

V_1 = Ah

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:

P_1Ah_1 = P_2Ah_2

h_2 = h_1\frac{P_1}{P_2} = 0.36\frac{1.105}{200000} = 0.000002 m

b) If the temperatures changes, we can still reuse the ideal gas equation above:

\frac{P_1Ah_1}{T_1} = \frac{P_2Ah_2}{T_2}

h_2 = h_1\frac{P_1T_2}{P_2T_1} = 0.36\frac{1.105 * 275}{200000*300} =0.00000182 m

3 0
2 years ago
Any kind of wave spreads out after passing through a small enough gap in a barrier. This phenomenon is known as _________. a) di
bulgar [2K]

Answer:

a) diffraction

Explanation:

Diffraction occurs when waves pass through small openings, around obstacles or sharp edges.When an opaque object is between the point of light and a screen, the border between the shaded and illuminated regions on the screen is not defined. A careful inspection of the scrubber shows that a small amount of light is diverted to the shaded region. The region outside the shadow contains bright and dark altered bands, where the intensity of the first band is brighter than the region of uniform illumination.

6 0
2 years ago
Read 2 more answers
The fastest pitched baseball was clocked at 47 m/s. Assume that the pitcher exerted his force (assumed to be horizontal and cons
arsen [322]

Answer:

Explanation:

F ×1 = 0.5×0.145×47×47

F = 160.15 N

4 0
2 years ago
Sketch the circuit labeling the meter and bulb as two separate resistors connected in parallel to the voltage source. Then show
Ksenya-84 [330]

Answer:

Show attached picture

Explanation:

Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call R_M its internal resistance) and R indicates the resistance of the light bulb.

We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:

R_M = 1000 R (1)

Both  the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

V_M = V_R

Using Ohm's law, V=RI, we can rewrite the previous equation as:

R_M I_M = R I_R

where

I_M is the current in the meter

I_R is the current in the bulb

Using (1), this equation becomes

(1000 R) I_M = R I_R \rightarrow I_M = \frac{I_R}{1000}

so, the current in the meter is 1000 times less than through the bulb.

5 0
2 years ago
The electric field 1.5 cm from a very small charged object points toward the object with a magnitude of 180,000 N/C. What is the
Ray Of Light [21]

Answer:

q = 4.5 nC

Explanation:

given,

electric field of small charged object, E = 180000 N/C

distance between them, r = 1.5 cm = 0.015 m

using equation of electric field

E = \dfrac{kq}{r^2}

k = 9 x 10⁹ N.m²/C²

q is the charge of the object

q= \dfrac{Er^2}{k}

now,

q= \dfrac{180000\times 0.015^2}{9\times 10^9}

      q = 4.5 x 10⁻⁹ C

      q = 4.5 nC

the charge on the object is equal to 4.5 nC

8 0
2 years ago
Read 2 more answers
Other questions:
  • Object A with a mass of 500 kilograms hits stationary object B with a mass of 920 kilograms. If the collision is elastic, what h
    14·1 answer
  • How and why does the distance between 2 electrodes affect the rate of electrolysis? ...?
    11·1 answer
  • vector A makes equal angles with x,y and z axis. value of its components (in terms of magnitude of vector A will be?
    6·2 answers
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • A power drill runs at a voltage of 120 V and draws a current of 4 A. What is the wattage of the drill?
    11·1 answer
  • Ben walks 500 meters from his house to the corner store. He then walks back toward his house, but continues 200 meters past his
    14·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • Use the drop down menu to answer the question
    7·2 answers
  • You use a slingshot to launch a potato horizontally from the edge of a cliff with speed v0. The acceleration due to gravity is g
    13·1 answer
  • A force of only 150 N can lift a 600 N sack of flour to a height of 0.50 m when using a lever as shown in the diagram below. a.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!