Answer:
a) amount of kinetic energy converted to internal energy = 2.5 x 10 raised to power 7 Joule
b) Kinetic energy gained by the earth = 2.1 x 10-16J
c) All the kinetic energy is converted to internal energy and the energy is further converted to thermal energy hence the reason for the hotness at around where the meteorite strikes.
Explanation:
The detailed steps and appropriate application of the law of conservation of momentum is as shown in the attached file.
V ( initial ) = 20 m/s
h = 2.30 m
h = v y * t + g t ² / 2
d = v x * t
1 ) At α = 18°:
v y = 20 * sin 18° = 6.18 m/s
v x = 20 * cos 18° = 19.02 m/ s
2.30 = 6.18 t + 4.9 t²
4.9 t² + 6.18 t - 2.30 = 0
After solving the quadratic equation ( a = 4.9, b = 6.18, c = - 2.3 ):
t 1/2 = (- 6.18 +/- √( 6.18² - 4 * 4.9 * (-2.3)) ) / ( 2 * 4.9 )
t = 0.3 s
d 1 = 19.02 m/s * 0.3 s = 5.706 m
2 ) At α = 8°:
v y = 20* sin 8° = 2.78 m/s
v x = 20* cos 8° = 19.81 m/s
2.3 = 2.78 t + 4.9 t²
4.9 t² + 2.78 t - 2.3 = 0
t = 0.46 s
d 2 = 19.81 * 0.46 = 9.113 m
The distance is:
d 2 - d 1 = 9.113 m - 5.706 m = 3.407 m
GOOD LUCK AND HOPE IT HELPS U
Answer:
<em>The gravitational force between Royce and Earth would be doubled at 16 years.</em>
Explanation:
<em>"Newton's law of universal gravitation states that gravitation force between two masses is proportional to the magnitude of their masses and inverse-squared of their distance".</em>
Royce Scenario
At the age of 10 Royce's mass = 30kg
At the age of 16 Royce's mass = 60kg
From Newton's law of universal gravitation, an Increase in the mass of a body would amount to a corresponding increase in the gravitational force.
In the case of Royce, the mass double between the age of 10 and 16, so there would be an increase of the gravitation force by double.
Answer:
option B
Explanation:
given,
Force exerted by the hydraulic jack piston = F₁ = 250 N
diameter of piston, d₁ = 0.02 m
r₁ = 0.01 m
diameter of second piston, d₂ = 0.15 m
r₂ = 0.075 m
mass of the jack to lift = ?
now,




F₂ = 14062.5 N
F = m g


m = 1435 Kg
hence, the correct answer is option B
Answer:
The distance between knothole and the paint ball is 0.483 m.
Explanation:
Given that,
Height = 4.0 m
Distance = 15 m
Speed = 50 m/s
The angle at which the forester aims his gun are,




Using the equation of motion of the trajectory
The horizontal displacement of the paint ball is


Using the equation of motion of the trajectory
The vertical displacement of the paint ball is



Put the value into the formula


We need to calculate the distance between knothole and the paint ball



Hence, The distance between knothole and the paint ball is 0.483 m.