Answer:
(a) Height is 4.47 m
(b) Height is 4.37 m
Solution:
As per the question:
Initial velocity of teh ball, 
Angle made by the ramp, 
Distance traveled by the ball on the ramp, d = 5.00 m
Now,
(a) At any point on the projectile before attaining maximum height, the velocity can be given by the eqn-3 of motion:

where
H =
g = 

= 19.06 m/s
Now, maximum height attained is given by:


Height from the ground = 
(b) now, considering the coefficient of friction bhetween ramp and the ball,
:
velocity can be given by the eqn-3 of motion:


= 18.7 m/s
Now, maximum height attained is given by:


Height from the ground = 
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m
Answer:
The answer is "between 20 s and 30 s".
Explanation:
Calculating the value of positive displacement:


Calculating the value of negative displacement upon the time t:




That's why its value lie in "between 20 s and 30 s".
Answer:
3000 kg.m/s
Explanation:
Momentum, p is a product of mass and velocity hence
p=mv where m is mass and v is velocity.
Change in momentum is given by
where subscripts f and i represent final and initial respectively. Since the lorry finally comes to rest then the final velocity is zero. Substituting the given figures then
Change in momentum= 6000(0-0.5)=-3000 kg.m/s