Answer:
46.8 kg
Explanation:
Mass = (density)(volume)
= (1.3)(36)
<u>M</u><u>a</u><u>s</u><u>s</u><u> </u><u>=</u><u> </u><u>4</u><u>6</u><u>.</u><u>8</u><u> </u><u>k</u><u>g</u>
We can solve this problem using the force equation.
Force = Mass * Acceleration
2kg * 4m/s = 8 N
The net force required to keep the object moving at this speed and in this direction is 8 N.
Answer:
ΔE = 8.77 × 10¹¹ J
Explanation:
given,
²¹⁴₈₄Po -----> ²¹⁰₈₂Pb + 42 He
Atomic masses: Pb-210 = 209.98284 amu
Po-214 = 213.99519 amu
He-4 = 4.00260 amu
1 kg = 6.022 × 10²⁶ amu;
NA = 6.022 × 10²³ mol⁻¹
c = 2.99792458 × 10⁸ m/s
energy of molecule using equation
ΔE = Δm c²
Δm is mass difference and c is speed of light
Δm = 209.98284 + 4.00260 - 213.99519
Δm = - 0.00975 amu
1 amu = 1.66 x 10⁻²⁷ kg
- 0.00975 amu = - 0.00975 x 1.66 x 10⁻²⁷ Kg
= -0.016185 x 10⁻²⁷ Kg
total mass = 6.022 × 10²³ x -0.016185 x 10⁻²⁷
= -0.097467 x 10⁻⁴ Kg
ΔE = -(0.097467 x 10⁻⁴) (3 x 10^8)²
ΔE = - 8.77 × 10¹¹
ΔE = 8.77 × 10¹¹ J
Dependant variable is something which you MEASURE during an experiment
So your answer would be : B
The velocity is the integral of acceleration. If acceleration is 100 m/s^2 then velocity is:

So to know the velocity at any time, t, we just put t in seconds into this equation. To know at what time we get to a certain velocity, we set this equation equal to that velocity and solve for t: