Answer:The answer must be The weight of the man and the vertical distance moved.
Explanation: you calculate it by the force you applied times the distance you moved
Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement
As the question is about changing in frequency of a wave for an observer who is moving relative to the wave source, the concept that should come to our minds is "
Doppler's effect."
Now the general formula of the Doppler's effect is:

-- (A)
Note: We do not need to worry about the signs, as everything is moving towards each other. If something/somebody were moving away, we would have the negative sign. However, in this problem it is not the issue.
Where,
g = Speed of sound = 340m/s.

= Velocity of the receiver/observer relative to the medium = ?.

= Velocity of the source with respect to medium = 0 m/s.

= Frequency emitted from source = 400 Hz.

= Observed frequency = 408Hz.
Plug-in the above values in the equation (A), you would get:


Solving above would give you,

= 6.8 m/s
The correct answer = 6.8m/s
Answer:
v= 2413.5 m/s
Explanation:
maximum change of speed of rocket
=(initial exhaust velocity)×ln [(initialmass/finalmass)]
let initial mass= m
final mass = m-m(4/5) = m/5
[since the 80% of mass which is fuel is exhausted]
V-0 = 1500 ln (1/0.2)
V= 1500×1.609 = 2413.5 m/s
therefore, its exhaust speed v= 2413.5 m/s
The density of the substance is the ratio of its mass over the space it occupies. In mathematical equation, this can be expressed as,
ρ = m / v
where ρ is density, m is mass, and v is volume.
Substituting the known values from the given,
ρ = (45 g) / (8 cm³)
ρ = 5.625 g/cm³
<em>ANSWER: 5.625 g/cm³</em>