Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer:
The formula to calculate velocity in this case:
v = v0 + at
=> a = (v - v0)/t
= (50 - 0)/4
= 50/4 = 12.5 (m/s2)
Hope this helps!
:)
Answer:
Explanation:
40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.
Answer:
C) 20 m/s
Explanation:
Wave: A wave is a disturbance that travels through a medium and transfers energy from one point to another, without causing any permanent displacement of the medium itself. Examples of wave are, water wave, sound wave, light rays, radio waves. etc.
The velocity of a moving wave is
v = λf ............................ Equation 1
Where v = speed of the wave, λ = wave length, f = frequency of the wave.
Given: f = 2 Hz (two complete cycles in one seconds), λ = 10 meters
Substituting these values into equation 1
v = 2×10
v = 20 m/s.
Thus the speed of the wave = 20 m/s
The right option is C) 20 m/s
Answer:
99.63 kg
Explanation:
From the force diagram
N = normal force on the worker from the surface of the roof
f = static frictional force = 560 N
θ = angle of the slope = 35
m = mass of the worker
W = weight of the worker = mg
W Cosθ = Component of the weight of worker perpendicular to the surface of roof
W Sinθ = Component of the weight of worker parallel to the surface of roof
From the force diagram, for the worker not to slip, force equation must be
W Sinθ = f
mg Sinθ = f
m (9.8) Sin35 = 560
m = 99.63 kg