Answer:
d = Δv(t2-t1)
Explanation:
Speed is defined as the change of displacement with respect to time. It is expressed as shown;
Speed = change in displacement/change in time
Δv = d/Δt
d = Δv*Δt
d = ΔvΔt
Δt = t2-t1
d = Δv(t2-t1)
Δv is the change in rate of speed
Δt = change in time
The correct expression for the displacement of the car during this motion is d = Δv(t2-t1)
Answer: 9.312 m/s
Explanation:
The friction force (opposite to the motion) is Fa = μ*m*g*cos(α) with μ = kinetic friction. The force that makes the motion is
F = m*g*sin(α).
The Newton's law gives:
F - Fa = m*a
m*g*sin(α) - μ*m*g*cos(α) = m*a
g*sin(α) - μ*g*cos(α) = a so a = 4.335 m/s²
It's a uniformly accelerated motion:
Space
S = 0.5*a*t²
10 = 0.5*a*t²
=> t = 2.148 s
Velocity
V = a*t = 9.312 m/s.
It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
The intensity is defined as the ratio between the power emitted by the source and the area through which the power is calculated:

(1)
where
P is the power
A is the area
In our problem, the intensity is

. At a distance of r=6.0 m from the source, the area intercepted by the radiation (which propagates in all directions) is equal to the area of a sphere of radius r, so:

And so if we re-arrange (1) we find the power emitted by the source: