Answer:
The graph should have velocity (v) on the y-axis and radius (r) on the x-axis. It will have a straight, horizontal line that goes across the graph.
Explanation:

Shown above is the formula for Kinetic Energy in rotational terms. I'm new to brain.ly so I couldn't insert the omega symbol, sorry about that. Omega can be replaced with
. Moment of Inertia (I) can be replaced with
.
The equation becomes
.
The r's cancel out, making the different radii negligible, causing a straight horizontal line.
Answer:
The young tree, originally bent, has been brought into the vertical position by adjusting the three guy-wire tensions to AB = 7 lb, AC = 8 lb, and AD = 10 lb. Determine the force and moment reactions at the trunk base point O. Neglect the weight of the tree.
C and D are 3.1' from the y axis B and C are 5.4' away from the x axis and A has a height of 5.2'
Explanation:
See attached picture.
Answer:
The current is 2.0 A.
(A) is correct option.
Explanation:
Given that,
Length = 150 m
Radius = 0.15 mm
Current density
We need to calculate the current
Using formula of current density


Where, J = current density
A = area
I = current
Put the value into the formula


Hence, The current is 2.0 A.
Answer:
<em>a) Fvt cosθ</em>
<em>b) Fv cosθ</em>
<em></em>
Explanation:
Each horse exerts a force = F
the rope is inclined at an angle = θ
speed of each horse = v
a) In time t, the distance traveled d = speed x time
i.e d = v x t = vt
also, the resultant force = F cosθ
Work done W = force x distance
W = F cosθ x vt = <em>Fvt cosθ</em>
<em></em>
b) Power provided by the horse P = force x speed
P = F cosθ x v
P = <em>Fv cosθ</em>
Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS