' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh
Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N
Answer:
The magnitude of the acceleration of the car is 35.53 m/s²
Explanation:
Given;
acceleration of the truck,
= 12.7 m/s²
mass of the truck,
= 2490 kg
mass of the car,
= 890 kg
let the acceleration of the car at the moment they collided = 
Apply Newton's third law of motion;
Magnitude of force exerted by the truck = Magnitude of force exerted by the car.
The force exerted by the car occurs in the opposite direction.

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²
Answer: 2.1 %
Explanation:
The radius of the Argon atom, r = 71 pm = 7.1 × 10 ⁻¹¹ m
Average orbital speed of electrons, v = 3.9 × 10⁷ m/s
From uncertainty principle:
Δx m Δv ≥ h/4π
mass of electron, m = 9.1 ×10⁻³¹ kg
Δx = radius of the argon atom = 7.1 × 10 ⁻¹¹ m


Percentage uncertainty:
