answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
2 years ago
10

a plane travels 204 km, northeast in 15.0 minutes. It also increases elevation by 1.6 km, upward in the same amount of time. Wha

t are the average velocities in the two separate directions?
Physics
1 answer:
mina [271]2 years ago
7 0

Answer:

230 m/s northeast, 1.8 m/s up

Explanation:

204 kilometres = 204000 metres

15.0 minutes = 900 seconds

Velocity = Distance / Time

= 204000 / 900

= 230 m/s northeast (to 2 sf.)

1.6km = 1600 metres

Velocity = 1600 / 900

= 1.8 m/s up (to 2 sf.)

You might be interested in
As a blacksmith heats a piece of iron, the iron glows red, then yellow, then white. The iron provides a demonstration of which p
Nitella [24]
The answer is D. Blackbody radiation. The piece of iron glows red because its temperature is around 1000 K, then yellow because its temperature is around 2800 K, and then white because its temperature is around 5500K. This shows that the spectrum of the radiation is determined by absolute temperature, as when the temperature of a blackbody radiator increases, the peak of the radiation curve moves to shorter wavelengths. 
6 0
2 years ago
The magnetic field around a current-carrying wire is ________proportional to the current and _________proportional to the distan
PSYCHO15rus [73]

Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

Explanation:

Magnetic field around a long current carrying wire is given by

B=\frac{\mu _o I}{2\pi r}

where B= magnetic field

           \mu _o= permeability of free space

           I= current in the long wire and

           r= distance from the current carrying wire

Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  

Now if I'=3I and r'=2r then magnetic field B' is given by

B'=\frac{\mu _oI'}{2\pi r'}=\frac{\mu _o3I}{2\pi 2r}=1.5B

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

   

7 0
2 years ago
Read 2 more answers
A particle moving in the x direction is being acted upon by a net force F(x)=Cx2, for some constant C. The particle moves from x
elixir [45]

Answer:

Change in kinetic energy is ( 26CL³)/3

Explanation:

Given :

Net force applied, F(x) = Cx²  ....(1)

Displacement of the particle from xi = L to xf = 3L.

The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.

That is,

ΔK = W = ∫F·dx

Substitute equation (1) in the above equation.

ΔK =  ∫Cx²dx

The limit of integration from xi = L to xf = 3L, so

\Delta K=\frac{C}{3}(x_{f} ^{3} - x_{i} ^{3})

Substitute the values of xi and xf in the above equation.

\Delta K=\frac{C}{3}((3L) ^{3} - L ^{3})

\Delta K=\frac{C}{3}\times26L^{3}

5 0
2 years ago
Two chargedparticles, with charges q1=q and q2=4q, are located at a distance d= 2.00cm apart on the x axis. A third charged part
erica [24]

Answer:

Two possible points

<em>x= 0.67 cm to the right of q1</em>

<em>x= 2 cm to the left of q1</em>

Explanation:

<u>Electrostatic Forces</u>

If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

\displaystyle f=k\frac{q_1\ q_2}{d^2}

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.

\displaystyle F_{13}=k\frac{q_1\ q_3}{d_{13}^2}

\displaystyle F_{13}=k\frac{(q)\ (q)}{x^2}

\displaystyle F_{23}=k\frac{q_2\ q_3}{d_{23}^2}

\displaystyle F_{23}=k\frac{(q)(4q)}{(0.02-x)^2}

\displaystyle F_{23}=\frac{4k\ q^2}{(0.02-x)^2}

Equating

\displaystyle F_{13}=F_{23}

\displaystyle \frac{K\ q^2}{x^2}=\frac{4K\ q^2}{(0.02-x)^2}

Operating and simplifying

\displaystyle (0.02-x)^2=4x^2

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

\displaystyle 0.02-x=\pm 2x

Assuming the positive sign :

\displaystyle 0.02-x= 2x

\displaystyle 3x=0.02

\displaystyle x=0.00667\ m

x=0.67\ cm

Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative

\displaystyle 0.02-x=-2x

\displaystyle x=-0.02\ m

\displaystyle x=-2\ cm

The negative sign of x means q3 is located to the left of q1 (assumed in the origin).

5 0
2 years ago
if m represents mass in kg, v represents speed in m/s, and r represents radius in m, show that the force F in the equation F=mv^
Zarrin [17]
This approach is called the dimensional analysis which involves only the units of measurement without their magnitudes. You simply have to do the operations by using variables. Cancel out like items that may appear both in the numerator and denominator side. The solution is as follows:

F = mv²/r = [kg][m/s]²/[m] = [kg][m²⁻¹][1/s²] = [kg·m/s²]
4 0
2 years ago
Other questions:
  • Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing
    9·2 answers
  • No person who thinks scientifically places any faith in the predictions of astrologers. Nevertheless there are many people who r
    11·2 answers
  • A stone is thrown horizontally from 2.4m above the ground at 35m/s. The wall is 14m away and 1m high.At what height the stone wi
    7·1 answer
  • Rank the following situations according to the magnitude of the impulse of the net force, from largest value to smallest value.
    6·1 answer
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • A transition metal complex in solution has an absorption peak at 450 nm, in the blue region of the visible spectrum. What color
    10·1 answer
  • From Kepler's third law, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to:
    5·1 answer
  • For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
    10·1 answer
  • A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
    6·1 answer
  • Jordan wants to know the difference between using a 60-W and 100-W lightbulb in her lamp. She calculates the energy it would tak
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!