answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
professor190 [17]
2 years ago
11

A very long, straight wire has charge per unit length 3.50×10^−10 C/m . At what distance from the wire is the electricfield magn

itude equal to 2.90 N/C ?
Physics
1 answer:
Dafna11 [192]2 years ago
5 0

Answer:

r= 2.17 m

Explanation:

Conceptual Analysis:

The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:

E= 2k*(λ/r) Formula (1)

Where:

E: electric field .( N/C)

k: Coulomb electric constant. (N*m²/C²)

λ: linear charge density. (C/m)

r : distance from the charge line to the surface where E calculates (m)

Known data

E= 2.9  N/C

λ = 3.5*10⁻¹⁰ C/m

k= 8.99 *10⁹ N*m²/C²

Problem development

We replace data in the formula (1):

E= 2*k*(λ/r)

2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)

r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)

r= 2.17 m

You might be interested in
One object has twice as much mass as another object. The first object also has twice as much a velocity. b gravitational acceler
Gemiola [76]
It would be c. As it can’t accelerate faster thus not having a faster velocity so it’s inertia
6 0
2 years ago
What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22
SIZIF [17.4K]

Answer:

5.45\times 10^{-4} W

Explanation:

T_{r} = Temperature of the room = 22.0 °C = 22 + 273 = 295 K

T_{s} = Temperature of the skin = 33.0 °C = 33 + 273 = 306 K

A = Surface area = 1.50 m²

\epsilon = emissivity = 0.97

\sigma = Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴

Rate of heat transfer is given as

R = \epsilon \sigma A (T_{s}^{2} - T_{r}^{2})

R = (0.97)(5.67\times 10^{-8}) (1.50) ((306)^{2} - (295)^{2})

R = 5.45\times 10^{-4} W

3 0
2 years ago
A ramp 20 m long and 4 m high is used to lift a heavy box. A pulley system with 4 rope sections supporting the load is used to l
irga5000 [103]

The correct option is d)greater input distance and a smaller force

Why?

We must remember that while a pulley has more rope sections, the force requiered to lift the load will be smaller, but the input distance required to lift the load will be greater.

Hence, for the problem, the correct option is d)greater input distance and a smaller force.

Have a nice day!

8 0
2 years ago
Of the following systems, which contains the most heat?
densk [106]

Answer:d

Explanation:

Given systems are state of matter and do not contain any heat instead Heat is required to change Phase or raise the temperature of the particular system.

For example 600 kg of ice at 0^{\circ}C

Heat Required to convert it to water at 0^{\circ}C is

Q=m\times L

Where L=latent heat of Fusion =334 J/gm

Q=600\times 334\times 1000

Q=200.4 MJ

8 0
2 years ago
What would the speed of each particle be if it had the same wavelength as a photon of yellow light (????=575.0 nm)? Proton (mass
PilotLPTM [1.2K]

Answer:

Proton: v=0.689 m/s

Neutron: v=0.688 m/s

Electron: v=1265.078 m/s

Alpha particle: v=0.173 m/s

Explanation:

De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:

λ=\frac{h}{mv}

h is the Planck constant: 6.626×10⁻³⁴\frac{kg.m^2}{s}

We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:

λ=\frac{h}{mv}

v=h÷(mλ)

<u>Proton:</u>

m=1.673×10⁻²⁴ g · \frac{1kg}{1000g}=1.673×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴\frac{kg.m^2}{s}÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)

v=0.689 m/s

<u>Neutron:</u>

m=1.675×10⁻²⁴ g · \frac{1kg}{1000g}=1.675×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴\frac{kg.m^2}{s}÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)

v=0.688 m/s

<u>Electron:</u>

m= 9.109×10⁻²⁸ g · \frac{1kg}{1000g}=9.109×10⁻³¹ kg

v=h÷(mλ)

v=6.626×10⁻³⁴\frac{kg.m^2}{s}÷(9.109×10⁻³¹ kg×575×10⁻⁹m)

v=1265.078 m/s

<u>Alpha particle:</u>

m=6.645×10⁻²⁴ g · \frac{1kg}{1000g}=6.645×10⁻²⁷ kg

v=h÷(mλ)

v=6.626×10⁻³⁴\frac{kg.m^2}{s}÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)

v=0.173 m/s

3 0
2 years ago
Read 2 more answers
Other questions:
  • Please help! Kiki makes a table to compare the particles in a magnesium atom to those in a magnesium ion. She knows that a magne
    5·2 answers
  • Give the symbols for 4 species that are isoelectronic with the telluride ion, te2-.
    12·1 answer
  • To warm 2.0 l of tea (d = 1.01 g/ml; sp. heat = a cook places a 500 g block of stone at a temperature of 200f into the teapot. a
    8·1 answer
  • Light has wavelength 600 nm in a vacuum. it passes into glass, which has an index of refraction of 1.5. what is the frequency of
    5·1 answer
  • Which description best explains a molecular bonding?
    5·1 answer
  • A 1.0-m-diameter vat of liquid is 2.0 m deep. The pressure at the bottom of the vat is 1.3 atm. What is the mass of the liquid i
    6·1 answer
  • Suppose the truck that’s transporting the box In Example 6.10 (p. 150) is driving at a constant speed and then brakes and slows
    15·1 answer
  • Two identical, unlabeled boxes are transported to an orbiting space station. The astronauts know that one box is filled with a l
    15·1 answer
  • Consider four different oscillating systems, indexed using i = 1 , 2 , 3 , 4 . Each system consists of a block of mass mi moving
    6·1 answer
  • A turntable of radius R1 is turned by a circular rubberroller of radius R2 in contact with it at their outeredges. What is the r
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!