The average velocity of Sandy is given by the total distance covered S divided by the total time taken t:

The total distance covered is

while the total time taken is 2 hours + half an hour (for the rest) + 1 hour and half, so

Therefore, the average velocity is
Answer:
Explanation:
The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.
From the given question, we are to determine the direction of the magnetic field bnet at a point A.
Also, having the notion that the currents in the two wires have equal magnitudes, Then:



Thus;
points out of the screen at A.
Answer:
The peak current carried by the axon is 5.85 x 10⁻⁸ A
Explanation:
Given;
distance of the field from the axon, r = 1.3 mm
peak magnetic field strength, B = 9 x 10⁻¹² T
To determine the peak current carried by the axon, apply the following equation;

where;
B is the peak magnetic field
r is the distance of the magnetic field from axon
μ is permeability of free space = 4π x 10⁻⁷
I is the peak current
Re-arrange the equation and solve for "I"

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A
Answer:
the center of mass is 7.07 cm apart from the bend
Explanation:
the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is
x₁ = L/2 = 20 cm /2 = 10 cm
when the wire is bent in a right angle the coordinates of the new centre of mass will be
x₂ = L₂/2
y₂= L₂/2
where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2
x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm
y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm
x₂=y₂=X
locating the bend in the origin (0,0) the distance to the centre of mass is
d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm
d = 7.07 cm