Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
Answer:
The radius is 
Explanation:
From the question we are told that
The magnetic field is 
The electron kinetic energy is 
Generally for the collision to occur the centripetal force of the electron in it orbit is equal to the magnetic force applied
This is mathematically represented as
=> 
Where m is the mass of electron with values
v is the escape velocity which is mathematically represented as

So

apply indices

substituting values


Answer:
592.92 x 10³ Pa
Explanation:
Mole of ammonia required = 10 g / 17 =0 .588 moles
We shall have to find pressure of .588 moles of ammonia at 30 degree having volume of 2.5 x 10⁻³ m³. We can calculate it as follows .
From the relation
PV = nRT
P x 2.5 x 10⁻³ = .588 x 8.32 x ( 273 + 30 )
P = 592.92 x 10³ Pa
The equation for momentum is p =
mv where p is the omentum, m is the mass and v is the velocity. Calculating the
momentum for each football player, player A will have a momentum of 1050
lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of
player B.