Answer:

Explanation:
Mass of the cable car, m = 5800 kg
It goes 260 m up a hill, along a slope of 
Therefore vertical elevation of the car = 
Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. =
). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.
Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.
Hence, total change in energy = mgh = 
where, g = acceleration due to gravity
h = height/vertical elevation
Ignoring fluid resistance, football will <span>maintain a constant speed until other forces accelerate the football.</span>
The angular velocity of the orbit about the sun is:
w = 1 rev / year = 1 rev / 3.15 × 10^7 s
Now in 1 rev there is 360° or 2π rad, therefore:
w = 2π rad / 3.15 × 10^7 s
To convert in linear velocity, multiply the rad /s by the
radius:
v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles
<span>v = 18.55 miles / s = 29.85 km / s</span>
Answer:

Explanation:
given,
radius of loop = 12.1 m
to find the minimum speed transverse by the rider to not to fall out upside down
centripetal force = 
gravitational force = m g
computing both the equation]





Answer:
26 days
Explanation:
m = 9.4×1021 kg
r= 1.5×108 m
F = 1.1×10^ 19 N
We know Fc = 
==> 1.1 ×
= (9.4 ×
×
) ÷ 1.5 × 
==> 1.1 ×
=
× 6.26×
==>
= 1.1 ×
÷ 6.26×
==>
= 0.17571885 × 
==> v= 0.419188323 ×
m/sec
==> v= 419.188322834 m/s
Putting value of r and v from above in ;
T= 2πr ÷ v
==> T= 2×3.14×1.5×
÷ 0.419188323 × 
==> T = 22.472× 100000 = 2247200 sec
but
86400 sec = 1 day
==> 2247200 sec= 2247200 ÷ 86400 = 26 days