Answer:


Explanation:
As the disc is unrolling from the thread then at any moment of the time
We have force equation as

also by torque equation we can say



Now we have



Also from above equation the tension force in the string is


Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
Answer:

Explanation:
We know that speed is given by dividing distance by time or multiplying length and frequency. The speed of the father will be given by Lf where L is the length of the father’s leg ad f is the frequency.
We know that frequency of simple pendulum follows that 
Now, the speed of the father will be
while for the child the speed will be 
The ratio of the father’s speed to the child’s speed will be

Answer:
a) One
Explanation:
In a uniform circular motion there must be a force acting to keep it in the circular track. This force can either be centripetal or a centrifugal force.
According to the Newton's first law of motion a particle continues to be in state of rest or in uniform motion until acted upon by an external force.
Here the term uniform motion need to be understood which refers to the uniform velocity of the particle in accordance to the vector laws.
Answer:
The energy of this particle in the ground state is E₁=1.5 eV.
Explanation:
The energy
of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

So we can rewrite the energy in the ground state as:



Finally
