Answer:
9.98 m/s
Explanation:
The force acting on the particle is defined by the equation:
[N]
where x is the position in metres.
The acceleration can be found by using Newton's second law:

where
m = 150 g = 0.150 kg is the mass of the particle. Substituting into the equation,
[m/s^2]
When x = 3.14 m, the acceleration is:

Now we can find the final speed of the particle by using the suvat equation:

where
u = 8.00 m/s is the initial velocity
v is the final velocity

x = 3.14 m is the displacement
Solving for v,

And the speed is just the magnitude of the velocity, so 9.98 m/s.
Answer:
Explanation:
GIVEN DATA:
Distance between keisha and her friend 8.3 m
angle made by keisha toside building 30 degree
height of her friend monique is 1.5 m
from the figure



therefore
height of keisha is 
= 14.376 + 1.5

therefore option c is correct
The acceleration is the change of speed/velocity over time. Thus to calculate this you do (V1-V2)/T or (11.2-9.6)/4 or 0.4 m/s^2
Answer:
Explanation:
The magnetic field in a solenoid is
B = μ₀ N / L I
Where N is the number of turns, L the solenoid length and I the current
N = B L / μ₀ I
Let's calculate
N = 5.8 10⁻³ 0.18 / 4 π 10⁻⁷ 1
N = 8.3 102 laps
N = 831 laps
Let's find the solenoid length
For this we use a rule of proportions
L_solenoid = Turns * wire diameter
L_ solenoid = 831 * 0.41 10--3
L_solenoid = 0.3407 m
We see that two turns are needed in the wire to have a length of 0.18 m
Explanation:
It is given that,
Diameter of the semicircle, d = 45 m
Radius of the semicircle, r = 22.5 m
Speed of greyhound, v = 15 m/s
The greyhound is moving under the action of centripetal acceleration. Its formula is given by :



We know that, 


Hence, this is the required solution.