Answer:
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Explanation:
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.
A) What is the wavefunction y(x,t) for the standing wave that is produced?
B) In which harmonic is the standing wave oscillating?
C) What is the frequency of the fundamental oscillation?
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. lambda=2L/n
when comparing the wave equation with the general wave equation , we get the wavelength to be
2*pi*x/lambda=6.98x
lambda=0.9m
we use the equation
lambda=2L/n
n=number of harmonics
L=length of string
0.9=2(1.35)/n
n=2.7/0.9
n=3
third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Answer:
It takes you 32.27 seconds to travel 121 m using the speed ramp
Explanation:
<em>Lets explain how to solve the problem</em>
- The speed ramp has a length of 121 m and is moving at a speed of
2.2 m/s relative to the ground
- That means the speed of the ramp is 2.2 m/s
- You can cover the same distance in 78 seconds when walking on
the ground
<em>Lets find your speed on the ground</em>
Speed = Distance ÷ Time
The distance is 121 meters
The time is 78 seconds
Your speed on the ground = 121 ÷ 78 = 1.55 m/s
If you walk at the same rate with respect to the speed ramp that
you walk on the ground
That means you walk with speed 1.55 m/s and the ramp moves by
speed 2.2 m/s
So your speed using the ramp = 2.2 + 1.55 = 3.75 m/s
Now we want to find the time you will take to travel 121 meters using
the speed ramp
Time = Distance ÷ speed
Distance = 121 meters
Speed 3.75 m/s
Time = 121 ÷ 3.75 = 32.27 seconds
It takes you 32.27 seconds to travel 121 m using the speed ramp
Answer:
Too little information, please elaborate
Answer:
-6.6 km/h
Explanation:
In 7hr plane travelled 2020km;
For the first 4hr the average speed was 310km/h;
d=st, s=d/t;
Distance covered in first 4h is d = 310km/h×4h = 1240km;
See the image attached for further solution