answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
2 years ago
6

A 0.0500-kg golf ball heads off from the tee with an initial speed of 78.2 m/s and reaches to its maximum height of 37.8 m. If a

ir resistance is neglected, (a) What is the kinetic energy of the ball at the pinnacle of its trajectory? (b) What is its speed when it is 5.60 m below the pinnacle point?
Physics
1 answer:
Marianna [84]2 years ago
3 0

(a) 134.4 J

The total mechanical energy of the ball at the moment of launch is just equal to its initial kinetic energy:

E=K_i = \frac{1}{2}mu^2

where

m = 0.05 kg is the mass of the ball

u = 78.2 m/s is the initial speed

Substituting,

E=\frac{1}{2}(0.05)(78.2)^2=152.9 J

At the pinnacle of its trajectory, the total mechanical energy is sum of kinetic energy and potential energy:

E=K_f + U_f = K_f + mgh

where

g=9.8 m/s^2 is the acceleration of gravity

h = 37.8 m is the maximum height

Since the total energy must be conserved,

E = 152.9 J

Therefore, we can solve to find the kinetic energy of the ball at the pinnacle:

K_f = E-mgh=152.9-(0.05)(9.8)(37.8)=134.4 J

b) 74.2 m/s

When the ball is 5.60 m below the pinnacle point, the heigth of the ball is

h=37.8-5.6=32.2 m

So its potential energy is

U=mgh=(0.05)(9.8)(32.2)=15.8 J

The total energy is again the sum of potential and kinetic energy:

E = K + U

So the kinetic energy at that point is

K=E-U=152.9-15.8=137.1 J

And since the kinetic energy is

K=\frac{1}{2}mv^2

We can find the speed:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(137.1)}{0.05}}=74.2 m/s

You might be interested in
Grain is pored into a silo to be stored for later use. Due to the friction between pieces of grain as they rub against eachother
MariettaO [177]

Answer:

3.1×10⁻¹¹ N

Explanation:

Use Coulomb's law:

F = k q₁ q₂ / r²

F = (9×10⁹) (6.0×10⁻¹⁰) (2.3×10⁻¹⁵) / (0.02 m)²

F = 3.1×10⁻¹¹

6 0
2 years ago
Consider the two moving boxcars in Example 5. Car 1 has a mass of m1 = 65000 kg and a velocity of v01 = +0.80 m/s. Car 2 has a m
Amiraneli [1.4K]

Answer:

1.034m/s

Explanation:

We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

m_1 = 65000kg\\v_1 = 0.8m/s\\m_2 = 92000kg\\v_2 = 1.2m/s

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

V_{cm} = \frac{m_1v_1+m_2v_2}{m_1+m_2}

Substituting,

V_{cm} = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

V_{cm} = 1.034m/s

Part B)

For the Part B we need to apply conserving momentum equation, this formula is given by,

m_1v_1+m_2v_2 = (m_1+m_2)v_f

Where here v_f is the velocity after the collision.

v_f = \frac{m_1v_1+m_2v_2}{m_1+m_2}

v_f = \frac{(65000*0.8)+(92000*1.2)}{92000+65000}

v_f = 1.034m/s

8 0
2 years ago
A 10-kilogram box is at static equilibrium, and the downward pull of gravity acting on the box is 98 newtons. What is the minimu
Nikolay [14]
The box is at equilibrium, so the net force on the box is zero (the force of gravity on the box is equal to the force exerted up on the box by the surface on which it rests.)
To pick up the box, our upward force must be greater than the force of gravity on the box (the weight). So, we must lift up the box with a force greater than 98 newtons. :)
4 0
2 years ago
Read 2 more answers
An electron is in motion at 4.0 × 106 m/s horizontally when it enters a region of space between two parallel plates, as shown, s
max2010maxim [7]

Answer:

xmax = 9.5cm

Explanation:

In this case, the trajectory described by the electron, when it enters in the region between the parallel plates, is a semi parabolic trajectory.

In order to find the horizontal distance traveled by the electron you first calculate the vertical acceleration of the electron.

You use the Newton second law and the electric force on the electron:

F_e=qE=ma             (1)

q: charge of the electron = 1.6*10^-19 C

m: mass of the electron = 9.1*10-31 kg

E: magnitude of the electric field = 4.0*10^2N/C

You solve the equation (1) for a:

a=\frac{qE}{m}=\frac{(1.6*10^{-19}C)(4.0*10^2N/C)}{9.1*10^{-31}kg}=7.03*10^{13}\frac{m}{s^2}

Next, you use the following formula for the maximum horizontal distance reached by an object, with semi parabolic motion at a height of d:

x_{max}=v_o\sqrt{\frac{2d}{a}}             (2)

Here, the height d is the distance between the plates d = 2.0cm = 0.02m

vo: initial velocity of the electron = 4.0*10^6m/s

You replace the values of the parameters in the equation (2):

x_{max}=(4.0*10^6m/s)\sqrt{\frac{2(0.02m)}{7.03*10^{13}m/s^2}}\\\\x_{max}=0.095m=9.5cm

The horizontal distance traveled by the electron is 9.5cm

4 0
2 years ago
How, if at all, would the equations written in Parts C and E change if the projectile was thrown from the cliff at an angle abov
sveta [45]

Answer:

x = v₀ cos θ   t ,   y = y₀ + v₀ sin θ t - ½ g t2

Explanation:

This is a projectile launch exercise, in this case we will write the equations for the x and y axes

Let's use trigonometry to find the components of the initial velocity

              sin θ = v_{oy} / v₀

              cos θ = v₀ₓ / v₀

              v_{y} = v_{oy} sin θ

              v₀ₓ = vo cos θ

now let's write the equations of motion

X axis

         x = v₀ₓ t

         x = v₀ cos θ   t

        vₓ = v₀ cos θ

Y axis

        y = y₀ + v_{oy} t - ½ g t2

        y = y₀ + v₀ sin θ t - ½ g t2

        v_{y} = v₀ - g t

       v_{y} = v₀  sin θ - gt

        v_{y}^{2} = v_{oy}^2 sin² θ - 2 g y

As we can see the fundamental change is that between the horizontal launch and the inclined launch, the velocity has components

7 0
2 years ago
Other questions:
  • A bird can fly 25 km/h. How long does it take to fly 15 km?
    14·1 answer
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • Analyze at the image below and answer the question that follows.
    14·2 answers
  • Match each label to the boundary it describes. convergent boundary new crust forms transform boundary crust submerges into the m
    5·2 answers
  • A box slides down a frictionless plane inclined at an angle θ ¸ above the horizontal. The gravitational force on the box is dire
    12·2 answers
  • Which one of the following devices converts radioactive emissions to light for detection?
    8·1 answer
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • James Joule (after whom the unit of energy is named) claimed that the water at the bottom of Niagara Falls should be warmer than
    8·1 answer
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • If there is a negative sign in front of the Hooke's Law equation, what does the force, F, represent?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!