Answer:
Δ P = 13.24 Pa
Explanation:
Given that
Density of oil ,ρ₁ = 9 x 10² kg/m³
We know that density for mercury ,ρ₂ = 13.6 x 10³ kg/m³
The change in the height of column ,Δh = 1.5 mm
The pressure given as
P = ρ g h
Change in the pressure
Δ P = ρ₁ g Δh
Now by putting the values
Δ P = 9 x 10² x 9.81 x 1.5 x 10⁻³ Pa
Δ P = 13.24 Pa
Therefor the change in the pressure will be 13.24 Pa.
Answer:

Explanation:
given,
magnetic field strength = 1.40 ✕ 10⁻³ T
frequency of oscillation = 60 Hz
diameter of RBC = 7.5 μm
EMF = ?





maximum emf that can generate around the perimeter of the cell 
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 
Answer:
The statement that best describes nuclear fusion is;
Nuclei combine to form a heavier nucleus, releasing energy
Explanation:
In nuclear fusion, we have the reaction of the nuclei of two or more atoms coming together (combining) to form heavier elements and subatomic particles such as protons and neutrons accompanied by the release or absorption in energy depending on the difference between the mass of the reactants and the products
Some nuclear fusion reaction require an input of energy and such reactions are therefore not spontaneous
The best option is nuclei (two or more nuclei) combine to form a heavier nucleus, releasing energy.
The magnitude of the force<span> a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away is 1920 Newtons. The formula used to solve this problem is:
F = kq1q2/r^2
where:
F = Electric force, Newtons
k = Coulomb's constant, 9x10^9 Nm^2/C^2
q1 = point charge 1, C
q2 = point charge 2, C
r = distance between charges, meters
Using direct substitution, the force F is determined to be 1920 Newtons.</span>