Explanation :
To start any lab work initially, we have to know the theory behind the experiment. After then the experiment should be started. At the end, the readings must be taken carefully and some conclusion can be drawn.
Some of the steps are given :
Step 1: Pump up six identical bike tires to the recommended air pressure.
Step 2: Place three tires under heat lamps, and keep the other three tires at room temperature.
Step 3: After four hours, measure the circumference of each tire.
Step 4: Record your results in the table.
The fifth step should be :
Step 5: Write the result or conclusion that shows what you have done during the entire experiment.
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer:
2.5 ms
Explanation:
v = Speed of sound in air = 343 m/s
f = Frequency = 200 Hz
Wavelength is given by

In the case of destructive interference, path difference is given by

Delay is givenn by

The minimum headphone delay, that will cancel this noise is 2.5 ms
Answer:
Canyon is 50.176 meter deep.
Explanation:
The students is standing on the rim of the canyon and drops down a rock from the rim(cliff). We have to find what is the depth of the canyon i.e. how much below is the ground from the cliff.
Given data:
Time = t = 3.2 s
Initial velocity =
= 0 m/s
Gravitational acceleration = g = 9.8 m/s²
Height = h = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero

h = (0.5)(9.8)(3.2)²
h = 50.176 m
This means, the rock traveled 50.176 meters to reach the bottom of the Canyon. So, the Canyon is 50.176 meter deep.
Answer:
Thermal Power = 460W
Explanation:
From Stephan-Boltzmann Law Formula;
P = єσT⁴A
Where,
P = Radiation energy
σ = Stefan-Boltzmann Constant
T = absolute temperature in Kelvin
є = Emissivity of the material.
A=Area of the emitting body
Now, σ = 5.67 x 10^(-8)
є = 0.6
Temperature = 30°C and coverting to kelvin = 30 + 273 = 303K
Area ; since we are to consider the sides of the human body as 2m and 0.8m,thus area = 2 x 0.8 = 1.6
Thus thermal power = 0.6 x 5.67 x 10^(-8) x303⁴ x 1.6 = 458. 8W
Normally, we approximate to the nearest 10W. Thus, thermal power is approximately 460W