Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity. If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.
(64.2 m/s) - [ (9.8 m/s² ) x (1.5 sec) ]
= (64.2 m/s) - [ 14.7 m/s ]
= 49.5 m/s . (upward)
Answer:
Energy needed = 1100 kJ
Explanation:
Energy needed = Change in kinetic energy
Initial velocity = 15 m/s
Mass, m = 1600 kg

Final velocity = 40 m/s

Energy needed = Change in kinetic energy = 1280000-180000 = 1100000J
Energy needed = 1100 kJ
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
If Earth was twice as far from the sun, the force of gravity attracting the Earth to the sun would be only one-quarter as strong. The correct answer will be C.
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:
