answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
2 years ago
8

A car weighs 2,000 kg. It moves along a road by applying a force on the road with a parallel component of 560 N. There are two p

assengers in the car, each weighing 55 kg. If the magnitude of the force of friction experienced by the car is 45 N, what is the acceleration of the car?
Physics
1 answer:
Mila [183]2 years ago
8 0

Answer:

The acceleration of the car is 0.244 m/s²

Explanation:

Given;

mass of the car, m = 2,000 kg

applied parallel force on the car, F = 560 N

mass of the two passengers, m = 2 x 55 kg = 110 kg

frictional force on the car (reducing horizontal motion), Fk = 45 N

Weight of the car acting downward, W = 2,000 x 9.8 = 19,600 N

weight of the two passengers acting downward, w = 110 x 9.8 = 1078 N

The net horizontal force on the car is given by;

∑Fx = F - Fk

∑Fx = 560 - 45

∑Fx = 515 N

Apply Newton's second law of motion;

F = ma

where;

m is the total mass of the system = mass of car + mass of passengers

m = 2000 + 110 = 2,110 kg

a = ∑Fx / m

a = 515 / 2110

a = 0.244 m/s²

Therefore, the acceleration of the car is 0.244 m/s²

You might be interested in
A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati
zlopas [31]

Answer:

acceleration, a = 9.8 m/s²

Explanation:

'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.

u = 0 m/s

After 2 seconds, velocity of the ball is 19.6 m/s.

t = 2s, v = 19.6 m/s

Using

v = u + at

19.6 = 0 + 2a

a = 9.8 m/s²

6 0
2 years ago
Read 2 more answers
A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
NISA [10]

Explanation:

The given data is as follows.

    Mass of small bucket (m) = 4 kg

    Mass of big bucket (M) = 12 kg

    Initial velocity (v_{o}) = 0 m/s

    Final velocity (v_{f}) = ?

  Height H_{o} = h_{f} = 2 m

and,    H_{f} = h_{o} = 0 m

Now, according to the law of conservation of energy

         starting conditions = final conditions

  \frac{1}{2}MV^{2}_{o} + Mgh_{o} + \frac{1}{2}mv^{2}_{o} + mgh_{o} = \frac{1}{2}MV^{2}_{f} + Mgh_{f} + \frac{1}{2}mv^{2}_{f} + mgh_{f}

     \frac{1}{2}(12)(0)^{2} + (12)(9.81)(2) + \frac{1}{2}(4)(0)^{2} + (4)(9.81)(0) = \frac{1}{2}(12)V^{2}_{f} + (12)(9.81)(0) + \frac{1}{2}(4)V^{2}_{f} + (4)(9.81)(2)

                 235.44 = 8V^{2}_{f} + 78.48

                V_{f} = 4.43 m/s

Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.

3 0
1 year ago
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
550 J of work must be done to compress a gas to half its initial volume at constant temperature. How much work must be done to c
Over [174]

Answer:

The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J

Explanation:

The given variables are

Work done = 550 J

Volume change = V₂ - V₁ = -0.5V₁

Thus the product of pressure and volume change = work done by gas, thus

P × -0.5V₁ = 500 J

Hence -PV₁ = 1000 J

also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore  P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂

Also to compress the gas by a factor of 11 we have

P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11  = 909.091 J of work

7 0
2 years ago
Current X is 2.5 A and runs for 39 seconds. Current Y is 3.8 A and runs for 24 seconds. Which current delivered more charge, and
Aleonysh [2.5K]

Answer: B. Current x delivered 6.3 C more then Y

Explanation:

7 0
2 years ago
Other questions:
  • Every morning Ann walks her dog through the park, shown as a green square on the diagram below. They start at point 1, walk one
    11·1 answer
  • A new technology company is marketing drones for residential use. The bar graph shows the relation between number of sales and t
    12·1 answer
  • Technician A says that the pressure differential switch may need to be re-centered after bleeding the brakes. Technician B says
    11·1 answer
  • In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no add
    15·1 answer
  • Merry-go-rounds are a common ride in park playgrounds. The ride is a horizontal disk that rotates about a vertical axis at their
    6·1 answer
  • A vertical wire carries current in the upward direction. An electron is traveling parallel to the wire. What is the angle ααalph
    13·1 answer
  • An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
    8·1 answer
  • A kayaker needs to paddle north across a 100-m-wide harbor. The tide is going out, creating a tidal current that flows to the ea
    9·1 answer
  • A student determines the density, solubility, and boiling point of two liquids, Liquid 1 and Liquid 2. Then he stirs the two liq
    6·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!