First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc
Answer:
The value of total energy needed per minute for the humidifier = 77.78 KJ
Explanation:
Total energy per minute the humidifier required = Energy required to heat water to boiling point) + Energy required to convert liquid water into vapor at the boiling point) ----- (1)
Specific heat of water = 4190 
The heat of vaporization is = 2256 
Mass = 0.030 kg
Energy needed to heat water to boiling point = 
Energy needed to heat water to boiling point = 0.030 × 4.19 × (100 - 20)
Energy (
) = 10.08 KJ
Energy needed to convert liquid water into vapor at the boiling point
= 0.030 × 2256 = 67.68 KJ
Thus the total energy needed E =
+ 
E = 10.08 + 67.68
E = 77.78 KJ
This is the value of total energy needed per minute for the humidifier.
Explanation:
Upstroke is a mechanism which helps to raise the plunger and downstroke helps to help lower the plunger. On the up-stroke of the plunger, the lower valve opens and the upper valve is closed. ... Whereas, on the downstroke, the lower valve closes and the upper one opens.
Answer:
V is approximately = 23m/s
Explanation:
Kinetic energy = ½ mv²
Where m= mass = 0.450kg
V= velocity =?
K. E = 119J
Therefore
K. E = ½ mv²
Input values given
119= ½ × 0.450 × v²
Multiply both sides by 2
119 ×2 = 2 × 1/2 × 0.450 × v²
238= 0.450v²
Divide both sides by 0.450
238/0.450 = 0.450v²/0.450
v² = 528.89
Square root both sides
Sq rt v² = sq rt 528.89
V = 22.998m/s
V is approximately = 23m/s
I hope this was helpful, please rate as brainliest
Answer:
A. 261.6 hz.
B. 0.656 m.
Explanation:
A.
When yhe tube is open at one end and closed at the other,
F1 = V/4*L
Where,
F1 = fundamental frequency
V = velocity
L = length of the tube
When the tube is open at both ends,
F'1 = V/2*L
Where
F'1 = the new fundamental frequency
Therefore,
V/2*L x V/4*L
F'1 = 2 * F1
= 2 * 130.8
= 261.6 hz.
B.
F1 = V/4*L
Or
F'1 = V/2*L
Given:
V = 343 m/s
F1 = 130.8
L = 343/(4 * 130.8)
= 0.656 m.