answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
1 year ago
15

Two chargedparticles, with charges q1=q and q2=4q, are located at a distance d= 2.00cm apart on the x axis. A third charged part

icle,with charge q3=q, is placed on the x axis such that the magnitude of the force that charge 1 exerts on charge 3 is equal to the force that charge 2 exerts on charge 3. ~Find theposition of charge 3 when q = 2.00 nC . ~ Assuming charge 1 is located at the origin of the x axisand the positive x axis points to the right, find the two possible values x3,r and x3,l for the position of charge 3. I am stuck on this conversion x^2=2(2-x)^2 to find the value for x!
Physics
1 answer:
erica [24]1 year ago
5 0

Answer:

Two possible points

<em>x= 0.67 cm to the right of q1</em>

<em>x= 2 cm to the left of q1</em>

Explanation:

<u>Electrostatic Forces</u>

If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

\displaystyle f=k\frac{q_1\ q_2}{d^2}

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.

\displaystyle F_{13}=k\frac{q_1\ q_3}{d_{13}^2}

\displaystyle F_{13}=k\frac{(q)\ (q)}{x^2}

\displaystyle F_{23}=k\frac{q_2\ q_3}{d_{23}^2}

\displaystyle F_{23}=k\frac{(q)(4q)}{(0.02-x)^2}

\displaystyle F_{23}=\frac{4k\ q^2}{(0.02-x)^2}

Equating

\displaystyle F_{13}=F_{23}

\displaystyle \frac{K\ q^2}{x^2}=\frac{4K\ q^2}{(0.02-x)^2}

Operating and simplifying

\displaystyle (0.02-x)^2=4x^2

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

\displaystyle 0.02-x=\pm 2x

Assuming the positive sign :

\displaystyle 0.02-x= 2x

\displaystyle 3x=0.02

\displaystyle x=0.00667\ m

x=0.67\ cm

Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative

\displaystyle 0.02-x=-2x

\displaystyle x=-0.02\ m

\displaystyle x=-2\ cm

The negative sign of x means q3 is located to the left of q1 (assumed in the origin).

You might be interested in
A submarine periscope uses two totally reflecting 45-45-90 prisms with total internal reflection on the sides adjacent to the 45
Likurg_2 [28]

Answer

Given,

Periscope uses 45-45-90 prisms with total internal reflection adjacent to 45°.

refractive index of water, n_a = 1.33

refractive index of glass, n_g = 1.52

When the light enters the water, water will act as a lens and when we see the object from the periscope the object shown is farther than the usual distance.

7 0
1 year ago
A magnetic dipole with a dipole moment of magnitude 0.0243 J/T is released from rest in a uniform magnetic field of magnitude 57
ololo11 [35]

Answer:

47.76°

Explanation:

Magnitude of dipole moment = 0.0243J/T

Magnetic Field = 57.5mT

kinetic energy = 0.458mJ

∇U = -∇K

Uf - Ui = -0.458mJ

Ui - Uf = 0.458mJ

(-μBcosθi) - (-μBcosθf) = 0.458mJ

rearranging the equation,

(μBcosθf) - (μBcosθi) = 0.458mJ

μB * (cosθf - cosθi) = 0.458mJ

θf is at 0° because the dipole moment is aligned with the magnetic field.

μB * (cos 0 - cos θi) = 0.458mJ

but cos 0 = 1

(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³

1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³

1 - cos θi = 0.3278

collect like terms

cosθi = 0.6722

θ = cos⁻ 0.6722

θ = 47.76°

7 0
1 year ago
Read 2 more answers
Two identical balls are at rest and side by side at the top of a hill. You let one ball, A, start rolling down the hill. A littl
ICE Princess25 [194]

Answer:

Option b. it has the same position and the same acceleration as A

Explanation:

Let's analyze every statement:

a. it has the same position and the same velocity as A

In the instant where B passes A, they Do have the same position. Velocity however, cannot be the same because if they were, ball B would never pass ball A. So, this is false.

b. it has the same position and the same acceleration as A

As we said in the previous option, the position is the same. The acceleration is gravity for both balls, so this is true.

c. it has the same velocity and the same acceleration as A

Acceleration is the same but velocities are not, so this is false.

d. it has the same displacement and the same velocity as A

The distance they have traveled is the same, so the displacement is the same, but the velocity is not, so this is false.

e. it has the same position, displacement and velocity as A

The position and displacement is the same but not velocity, so this is false.

Only option b is true.

3 0
1 year ago
Two bar magnets are labeled A and B. The ends of each magnet are numbered 1 or 2, but the poles are not labeled. When A1 is brou
vichka [17]
It is definitely letter D. <span>A1 and B1 are like poles, but there is not enough information to tell whether they are north poles or south poles.

A1 and B1 is either both north poles or both south poles. Repulsion of both magnets says it all--like poles always repel while opposite poles always attract. Thus, the best conclusion to this would be choice D.</span>
3 0
2 years ago
Read 2 more answers
A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of
ANEK [815]

Answer:

The distance the piece travel in horizontally axis is

L=3.55m

Explanation:

a=2 \frac{rev}{s^{2}} \\h=0.820m\\r = 0.125 m&#10;\\d=150rev

d= 155 rev = 155(2\pi ) = 310\pi rad

a= 2.0 \frac{rev}{s^{2} } = 2.0(2\pi )  = 4.0\pi \frac{rev}{s^{2} }

d=d_{i}+vo*t+\frac{1}{2}*a*t^{2} \\ di=0\\vo=0\\d=\frac{1}{2}*a*t^{2}\\t=\sqrt{\frac{2*d}{a}}\\t=\sqrt{\frac{2*310 rad}{4\frac{rad}{s^{2}}}} \\t=12.449

w=a*t\\w=4\frac{rad}{s^{2}}*12.449s\\ w=49.79 \frac{rad}{s}

Now the angular velocity is the blade speed so:

V=w*r\\V=49.79 \frac{rad}{s}*0.175m\\V=8.7 \frac{m}{s}

assuming no air friction effects affect blade piece:

time for blade piece to fall to floor

t=\sqrt{\frac{2*h}{g}}\\t=\sqrt{\frac{2*0.820m}{9.8\frac{m}{s^{2} } }}\\t=0.409s

Now is the same time the piece travel horizontally

L=t*V\\L=0.409s*8.7\frac{m}{s}\\L=3.55m

blade piece travels  HORIZONTALLY = (24.5)(0.397) = 9.73 m  ANS

6 0
2 years ago
Other questions:
  • a 2.5 kg rock is dropped off a 32 m cliff and hits a spring, compressing it 57cm. what is the spring constant
    13·2 answers
  • Step 8: Observe How Changes in the Speed of the Bottle Affect Beanbag Height
    7·2 answers
  • Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
    11·2 answers
  • An agriculturalist working with Australian pine trees wanted to investigate the relationship between the age and the height of t
    9·1 answer
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    7·1 answer
  • A small first-aid kit is dropped by a rock climber who is descending steadily at 1.3 m/s. After 2.5 s, what is the velocity of t
    12·1 answer
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
  • Ellen does an experiment by releasing a ball from a height of 1 m above each floor in a tall building. She records the time it t
    8·2 answers
  • Students use a stretched elastic band to launch carts of known mass horizontally on a track. The elastic bands exert a force F,
    14·1 answer
  • Which statement accurately describes the motion of the object in the graph above over 10 seconds? Group of answer choices The ob
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!