answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
2 years ago
15

Two chargedparticles, with charges q1=q and q2=4q, are located at a distance d= 2.00cm apart on the x axis. A third charged part

icle,with charge q3=q, is placed on the x axis such that the magnitude of the force that charge 1 exerts on charge 3 is equal to the force that charge 2 exerts on charge 3. ~Find theposition of charge 3 when q = 2.00 nC . ~ Assuming charge 1 is located at the origin of the x axisand the positive x axis points to the right, find the two possible values x3,r and x3,l for the position of charge 3. I am stuck on this conversion x^2=2(2-x)^2 to find the value for x!
Physics
1 answer:
erica [24]2 years ago
5 0

Answer:

Two possible points

<em>x= 0.67 cm to the right of q1</em>

<em>x= 2 cm to the left of q1</em>

Explanation:

<u>Electrostatic Forces</u>

If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

\displaystyle f=k\frac{q_1\ q_2}{d^2}

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.

\displaystyle F_{13}=k\frac{q_1\ q_3}{d_{13}^2}

\displaystyle F_{13}=k\frac{(q)\ (q)}{x^2}

\displaystyle F_{23}=k\frac{q_2\ q_3}{d_{23}^2}

\displaystyle F_{23}=k\frac{(q)(4q)}{(0.02-x)^2}

\displaystyle F_{23}=\frac{4k\ q^2}{(0.02-x)^2}

Equating

\displaystyle F_{13}=F_{23}

\displaystyle \frac{K\ q^2}{x^2}=\frac{4K\ q^2}{(0.02-x)^2}

Operating and simplifying

\displaystyle (0.02-x)^2=4x^2

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

\displaystyle 0.02-x=\pm 2x

Assuming the positive sign :

\displaystyle 0.02-x= 2x

\displaystyle 3x=0.02

\displaystyle x=0.00667\ m

x=0.67\ cm

Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative

\displaystyle 0.02-x=-2x

\displaystyle x=-0.02\ m

\displaystyle x=-2\ cm

The negative sign of x means q3 is located to the left of q1 (assumed in the origin).

You might be interested in
When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion. Which o
Setler [38]

<u>Answer:</u>

Option: D. Gravity is pulling the crash test dummy in the direction the car is moving.

<u>Explanation: </u>

When a car accelerates from a standing start, the crash test dummy appears to be pressed backward into the seat cushion because the gravity is pulling the crash test dummy in the direction the car is moving.  

Basically when the car is starting, the person inside is in static position and the car is going to move. So it is putting a force on the person to move on the same speed. But as the person is sitting static hence gravity is pulling him behind from moving. Hence, The dummy appears to be pressed backward.

7 0
2 years ago
What units are given to the right of the equals sign
zhuklara [117]
The answer

2y + 14 = 17

The 17 is to the right of the = sign
It is also the answer
7 0
2 years ago
Determine the maximum weight of the bucket that the wire system can support so that no single wire develops a tension exceeding
stellarik [79]
Let there be N number of wires.

Maximum tension a wire can withstand = 100 lb

so, Total tension N wires can withstand =  100 N

now, total tension in N wires = Maximum weight of bucket

100 N  = W

so, W = 100N

W is the weight of bucket and 100N is its maximum value.
8 0
2 years ago
A simple circuit within a laptop has a single resistor with a resistance of 0.1 Ω and requires a current of 50 mA. Select the vo
jolli1 [7]

Voltage = (current) x (resistance)

The voltage across THIS RESISTOR is

V = (0.050 A) x (0.1 ohm)

V = 0.005 v (5 millivolts)


6 0
2 years ago
Read 2 more answers
The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
tatiyna

Answer:

Explanation:

Given

B_z=(2.4\mu T)\sin (1.05\times 10^7x-\omega t)

Em wave is in the form of

B=B_0\sin (kx-\omega t)

where \omega =frequency\ of\ oscillation

k=wave\ constant

B_0=Maximum\ value\ of\ Magnetic\ Field

Wave constant for EM wave k is

k=1.05\times 10^7 m^{-1}

Wavelength of wave \lambda =\frac{2\pi }{k}

\lambda =\frac{2\pi }{1.05\times 10^7}

\lambda =5.98\times 10^{-7} m

7 0
2 years ago
Other questions:
  • engineers who design battery operated devices suck as sell phones and MP3 players try to make them as efficient as possible. An
    5·1 answer
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
    8·1 answer
  • Suppose that a rectangular toroid has 2,000 windings and a self-inductance of 0.060 H. If the height of the rectangular toroid i
    13·1 answer
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The mass o
    15·1 answer
  • A shell is launched with a velocity of 100 m/s at an angle of 30.0° above horizontal from a point on a cliff 50.0 m above a leve
    13·1 answer
  • If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with spee
    10·1 answer
  • We know the moon circulates the Earth. Suppose the mass of the Earth and moon are 5.9742 x1024 kg and 7.36 x 1022 kg, whereas th
    9·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!