answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
2 years ago
9

A bicycle tire rotates 25 times in 10 seconds. What is it’s average angular velocity?

Physics
1 answer:
ryzh [129]2 years ago
3 0
<h2>Answer:</h2>

<u>Angular velocity of bicycle tire is 15.78 radians per second.</u>

<h3>Explanation:</h3>

Angular velocity is the change in angular speed of an object with respect to time take for change or it is the rate of change of circular motion.

In the given question the circular displacement is 25 rounds around a central point.

The angular displacement is measured in degrees and 1 round is equal to 360 degrees.

25 Rounds = 25 × 360 = 9000 degrees.

Angular velocity = angular displacement /time = 9000/10 = 900 degrees per second.

In SI,angular velocity is represented in radians per second.

So, 1 radian = 57.29 degrees

Angular velocity = 15.78 radians per second

You might be interested in
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
2 years ago
What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
kkurt [141]

Answer:

U = 12,205.5 J

Explanation:

In order to calculate the internal energy of an ideal gas, you take into account the following formula:

U=\frac{3}{2}nRT        (1)

U: internal energy

R: ideal gas constant = 8.135 J(mol.K)

n: number of moles = 10 mol

T: temperature of the gas = 100K

You replace the values of the parameters in the equation (1):

U=\frac{3}{2}(10mol)(8.135\frac{J}{mol.K})(100K)=12,205.5J

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J

6 0
2 years ago
In lab, your instructor generates a standing wave using a thin string of length L = 1.65 m fixed at both ends. You are told that
mars1129 [50]

Answer:

The maximum transverse speed of the bead is 0.4 m/s

Explanation:

As we know that the Amplitude of the travelling wave is

A = 3.65 mm

Now the speed of the travelling wave is

v_x = 13.5 m/s

now we know that distance of first antinode from one end is 27.5 cm

so length of the loop of the standing wave is given as

\frac{\lambda}{4} = 27.5 cm

\lambda = 110 cm

now we have

N = \frac{2L}{\lambda}

N = \frac{2(1.65)}{1.10}

N = 3

now we have

R = 2A sin(kx)

R = 2(3.65) sin(\frac{2\pi}{1.10}x)

R = 7.3 sin(1.82 \pi x)

now at x = 13.8 cm

R = 7.3 sin(1.82 \pi (0.138))

R = 5.18 mm

now we have

f = \frac{v}{\lambda}

f = \frac{13.5}{1.1}

f = 12.27 Hz

now maximum speed is given as

v_y = R\omega

v_y = (5.18 \times 10^{-3})(2\pi(12.27))

v_y = 0.4 m/s

4 0
2 years ago
The trough of the sine curve used to represent a sound wave corresponds to
iren [92.7K]

Answer:

The correct answer is a rarefaction.

Explanation:

Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.

There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.

Have a nice day!

4 0
2 years ago
A runner runs 4875 ft in 6.85 minutes. what is the runners average speed in miles per hour?
yanalaym [24]

The average speed can be easily calculated by taking the ratio of distance and time. That is:

average speed = distance / time

 

so calculating:

average speed = 4875 ft / 6.85 minutes

<span>average speed = 711.68 ft / min</span>

8 0
2 years ago
Read 2 more answers
Other questions:
  • Which amplitude of the following longitudinal waves has the greatest energy?
    12·2 answers
  • In which of the following examples does the object have both kinetic and potential energy? Select all that apply.
    11·2 answers
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • If you have to apply 40n of force on a crowbar to lift a rock that weights 400n, what is the actual mechanical advantage of the
    12·1 answer
  • 2H2S(g)⇌2H2(g)+S2(g),Kc=1.67×10−7 at 800∘C is carried out at the same temperature with the following initial concentrations: [H2
    6·2 answers
  • Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
    10·1 answer
  • A car of mass 1100kg moves at 24 m/s. What is the braking force needed to bring the car to a halt in 2.0 seconds? N
    13·1 answer
  • When work is done by an applied force, the object's energy will change. In this Interactive, does the work cause a kinetic energ
    13·1 answer
  • Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration
    5·1 answer
  • A 4.0 g string, 0.36 m long, is under tension. The string produces a 500 Hz tone when it vibrates in the third harmonic. The spe
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!