To solve the problem it is necessary to apply the Torque equations and their respective definitions.
The Torque is defined as,

Where,
I=Inertial Moment
Angular acceleration
Also Torque with linear equation is defined as,

Where,
F = Force
d= distance
Our dates are given as,
R = 30 cm = 0.3m
m = 1.5 kg
F = 20 N
r = 4.0 cm = 0.04 m
t = 4.0s
Therefore matching two equation we have that,

For a wheel the moment inertia is defined as,
I= mR2, replacing we have





Then the velocity of the wheel is

Therefore the correct answer is D.
Answer:
6.78 X 10³ N/C
Explanation:
Electric field near a charged infinite plate
= surface charge density / 2ε₀
Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.
Field due to charge density of +95.0 nC/m2
E₁ = 95 x 10⁻⁹ / 2 ε₀
Field due to charge density of -25.0 nC/m2
E₂ = 25 x 10⁻⁹ / 2ε₀
Total field
E = E₁ + E₂
= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ / 2ε₀
= 6.78 X 10³ N/C
Answer:
The new resistance becomes half of the initial resistance.
Explanation:
The resistance of a wire is given by :

= resistivity of material
L and A are linear dimension
If the electrical wire is replaced with one having every linear dimension doubled i.e. l' = 2l and r' = 2r
New resistance of wire is given by :




The new resistance becomes half of the initial resistance. Hence, this is the required solution.
Answer:
What is u should know it bc u should answered it already
Explanation:
As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m