Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Answer:
The amplitude is 2.3 m
The Wavelength is 8.6 m
The frequency is 0.16 Hz
The time period is 6.25 sec
The equation that governs the behavior is ![Y=(2.3)sin[(\frac{2\pi}{8.6} )x -(\frac{2\pi}{6.2} )t]](https://tex.z-dn.net/?f=Y%3D%282.3%29sin%5B%28%5Cfrac%7B2%5Cpi%7D%7B8.6%7D%20%29x%20-%28%5Cfrac%7B2%5Cpi%7D%7B6.2%7D%20%29t%5D)
Explanation:
The explanation is shown on the first uploaded image
Answer:
(a) 153.37 g
(b) 5705 kJ
Explanation:
(a) To find the amount of bean needed by a man you first calculate the equivalence in beans to 2500kJ

Thus, 153.37 g has the energy needed by a man that needs 200kJ per day.
(b) The amount of energy per pot of bean is given by:

Thus, the energy is 5705kJ
Four electrons are placed at the corner of a square
So we will first find the electrostatic potential at the center of the square
So here it is given as

here
r = distance of corner of the square from it center



now the net potential is given as


now potential energy of alpha particle at this position

Now at the mid point of one of the side
Electrostatic potential is given as

here we know that



now potential is given as


now final potential energy is given as

Now work done in this process is given as



Answer:
The tension in the cable when the craft was being lowered to the seafloor is 4700 N.
Explanation:
Given that,
When the craft was stationary, the tension in the cable was 6500 N.
When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N.
The drag force of 1800 N will act in the upward direction. As it was lowered or raised at a steady rate, so its acceleration is 0. As a result, net force is 0. So,
T + F = W
Here, T is tension
F = 1800 N
W = 6500 N
Tension becomes :

So, the tension in the cable when the craft was being lowered to the seafloor is 4700 N.