Answer:
A) F = - 8.5 10² N, B) I = 21 N s
Explanation:
A) We can solve this problem using the relationship of momentum and momentum
I = Δp
in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction
v₀ = 8.50 m / s
v_f = -8.50 m / s
F t = m v_f -m v₀
F =
let's calculate
F =
F = - 8.5 10² N
B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations
v² = v₀² - 2g (y- y₀)
as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0
v =
calculate
v =
v = 14 m / s
to calculate the momentum we use
I = Δp
I = m v_f - mv₀
when it hits the ground its speed drops to zero
we substitute
I = 1.50 (0-14)
I = -21 N s
the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is
I = 21 N s
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
Answer:
a=
Explanation:
The net force,
of the box is expressed as a product of acceleration and mass hence
where m is mass and a is acceleration
Making a the subject, a= 
From the attached sketch,
∑
where
is frictional force and
is horizontal angle
Substituting ∑
as
in the equation where we made a the subject
a= 
Since we’re given the value of F as 240N,
as 41.5N,
as
and mass m as 30kg
a= 
Answer:
The magnitude of the acceleration of the car is 35.53 m/s²
Explanation:
Given;
acceleration of the truck,
= 12.7 m/s²
mass of the truck,
= 2490 kg
mass of the car,
= 890 kg
let the acceleration of the car at the moment they collided = 
Apply Newton's third law of motion;
Magnitude of force exerted by the truck = Magnitude of force exerted by the car.
The force exerted by the car occurs in the opposite direction.

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²
Answer:
H=1020.12m
Explanation:
From a balance of energy:
where H is the height it reached, d is the distance it traveled along the ramp and Ff = μk*N.
The relation between H and d is given by:
H = d*sin(30) Replace this into our previous equation:

From a sum of forces:
N -mg*cos(30) = 0 => N = mg*cos(30) Replacing this:
Now we can solve for d:
d = 2040.23m
Thus H = 1020.12m