Answer:
0.0059
Explanation:
According to the question the seismic activity density is given by

Here,
Number of Earthquakes over a given time span = 424
The land area affected = 71300 mi²
So,

The seismic activity density is 0.0059
Answer:
The kinetic energy of the clam at a height of 5.0 m is 5.19 J and the speed of the clam at that height is 9.71 m/s.
<u>Explanation:
</u>
<em>Mechanical energy is constant throughout the travel</em>, we know that <em>mechanical energy is calculated by adding potential energy and kinetic energy</em>. Potential energy =
,
Kinetic energy =
and Mechanical energy =
Kinetic energy is zero at initial point. Now mechanical energy of clam with m=0.11kg,g=9.81
,h=9.8 m is = 0.11×9.81×9.8 = 10.58 J.
Mechanical energy of clam at a height of 5.0 m =
=
. We know that mechanical energy is constant hence, <em>mechanical energy of clam at height 9.8 m is equal to mechanical energy at height 5.0 m</em>. This is represented as following
10.58 =
10.58 – 5.39 =
5.19 =
kinetic energy of the clam is 5.19 J.
Now speed of the clam at height 5.0 m is 5.19 =
94.36 =
= 9.71 m/s. The speed of the clam is 9.71 m/s.
Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N
Answer:
(2) −1 e
Explanation:
A quark is the lightest elementary particles which form hadron such as proton and neutron. A quark has fractional charge.
Up, charm and top quarks have
charge where as down, strange and bottom quarks have
charge.
The antiparticle of up quark is antiup quark and has charge
charge.
The antiparticle of down quark is antidown quark and has charge
charge.
An antibaryon is composed of two anti-up quark and one anti-down quark.
Net charge of the anti-baryon is:
Thus, antibaryon has -1e charge.