answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
2 years ago
9

Three point charges, q1 , q2 , and q3 , lie along the x-axis at x = 0, x = 3.0 cm, and x = 5.0 cm, respectively. calculate the m

agnitude and direction of the electric force on each of the three point charges when q1 = +6.0 µc, q2 = +1.5 µc, and q3 = -2.0 µc
Physics
1 answer:
gulaghasi [49]2 years ago
7 0
In general, we know that the force of the electric field exerted on a point charge q at distance r from charge Q is:
F = k Qq/r²

If you have more than one charge, then the total force is the vectorial sum of the forces created by each charge.

Moreover, two charges with the same sign repulse each other, while two charges with opposite sign attract each other. This is fundamental to understand the direction of the force.

We will define "to the right" the direction towards increasing positive values of the x-axis (and we will assign a positive value), and "to the left" the direction towards decreasing negative values of the x-axis of x <span>(and we will assign a negative value).

Before considering each position, it is better to transform our data into the correct units of measurements:
q</span>₁ = 6.0×10⁻⁶C
q₂ = 1.5×10⁻⁶C
q₃<span> = 2.0×10⁻⁶C
d</span>₂ = 3×10⁻²m
d₃=  5×10⁻²m

A) In position 1, we have a positive charge (q₁) on which is exerted a repulsive force by another positive charge (q₂) - which will be to the left because the charge q₁ will be pushed away- and an attractive force by a negative charge - which will be to the right:
F₂₁ = 9×10⁹ ·  1.5×10⁻⁶ · 6.0×10⁻⁶ / (3×10⁻²)² = 90N
F₃₁ = 9×10⁹ ·  2.0×10⁻⁶ · 6.0×10⁻⁶ / (5×10⁻²)<span>² = 43.2N
The total force exerted on q</span>₁ will be:
F₁ = -90 + 43.2 = - 46.8N (negative, then to the left)

B)In position 2, we have a positive charge (q₂) on which is exerted a repulsive force by another positive charge (q₁) - which will be to the right because the charge q₂ will be pushed away- and an attractive force by a negative charge <span>(q₃)</span> - which will be to the right. We expect F₁₂ to be equal in magnitude but opposite to F₂₁ found in point A):
F₁₂ = 9×10⁹ · 6.0×10⁻⁶  ·  1.5×10⁻⁶/ (3×10⁻²)² = 90N
F₃₂ = 9×10⁹ ·  2.0×10⁻⁶ · 1.5×10⁻⁶ / (2×10⁻²)<span>² = 67.5N
The total force exerted on q</span>₂ will be:
F₂ = 90 + 67.5 = 157.5N (positive, then to the right)

C) In position 3, we have a negative charge (q₃) on which is exerted an attractive force by a positive charge (q₁) - which will be to the left - and an attractive force by another positive charge (q₂) - which will be to the left. We expect F₁₃ = -F₃₁ and F₂₃ = -F₃₂:
F₁₃ = 9×10⁹ · 6.0×10⁻⁶  ·  2.0×10⁻⁶/ (5×10⁻²)² = 43.2N
F₂₃ = 9×10⁹ · 1.5×10⁻⁶ · 2.0×10⁻⁶ / (2×10⁻²)<span>² = 67.5N
The total force exerted on q</span>₂ will be:
F₃ = -43.2 - 67.5 = -110.7N (negative, then to the left)
You might be interested in
A spring driven dart gun propels a 10g dart. It is cocked by exerting a force of 20N over a distance of 5cm. With what speed wil
adelina 88 [10]
<span>14 m/s Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration. 1. How much energy is stored in the spring? 2. How fast will the dart travel with that amount of energy. As for the energy stored, that's a simple matter of multiplication. So: 20 N * 0.05 m = 1 Nm = 1 J For the second part, the energy of a moving object is expressed as KE = 0.5 mv^2 where KE = Kinetic energy m = mass v = velocity Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So KE = 0.5 mv^2 1 J = 0.5 0.010 kg * v^2 1 kg*m^2/s^2 = 0.005 kg * v^2 200 m^2/s^2 = v^2 14.14213562 m/s = v So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
6 0
2 years ago
Read 2 more answers
2. Turn off the Parallel line and turn on the Line through focal point. Move the light bulb around. What do you notice about the
MArishka [77]

Answer:

The group of light rays is reflected back towards  the focal point thereby producing a magnifying effect.

Explanation:

8 0
2 years ago
Which amplitude of the following longitudinal waves has the greatest energy?
Rashid [163]

Which amplitude of the following longitudinal waves has the greatest energy?

amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds

8 0
2 years ago
Read 2 more answers
The density of nuclear matter is about 1018 kg/m3. Given that 1 mL is equal in volume to 1 cm3, what is the density of nuclear m
Sonbull [250]

Answer:

density is 10^{6} Mg/µL

Explanation:

given data

density of nuclear = 10^{18} kg/m³

1 ml = 1 cm³

to find out

density of nuclear matter in Mg/µL

solution

we know here

1 Mg = 1000 kg

so

1 m³ is equal to 10^{6} cm³

and here 1 cm³ is equal to  1 mL

so we can say 1 mL is equal to 10³ µL

so by these we can convert density

density = 10^{18} kg/m³

density = 10^{18} kg/m³ × \frac{10^{-3} }{10^{6} }  Mg/µL

density =  10^{6} Mg/µL

8 0
2 years ago
Read 2 more answers
Mickey, a daredevil mouse of mass m , m, is attempting to become the world's first "mouse cannonball." He is loaded into a sprin
Sati [7]

Answer:

  h = v₀² / 2g ,      h = k/4g     x²

Explanation:

In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches

Starting point. Lower compressed spring

              Em₀ = K = ½ m v²

Final point. Highest on the path

             Em_{f} = U = mg h

             

As or no friction the energy is conserved  

              Em₀ =  Em_{f}

              ½ m v₀²² = m g h

             h = v₀² / 2g

We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse

                  ½ k x² = 2 g h

                  h = k/4g     x²

8 0
2 years ago
Read 2 more answers
Other questions:
  • Gravitational potential energy is often released by burning substances. true or false
    15·2 answers
  • The buoyant force on an object fully submerged in a liquid depends on (select all that apply)
    13·1 answer
  • A taxi starts from Monument Circle and travels 5 kilometers to the east for 5 minutes. Then it travels 10 kilometers to the sout
    6·2 answers
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°
    5·1 answer
  • Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
    7·1 answer
  • A 14000N car traveling at 25m/s rounds a curve of radius 200m. Find the following: a. The centripetal acceleration of the car.
    9·2 answers
  • Suppose an electrical wire is replaced with one having every linear dimension doubled (i.e., the length and radius have twice th
    6·1 answer
  • In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for
    12·1 answer
  • E. Describe in short the structure of a mercury barometer<br>​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!