Answer:
Speed of 1.83 m/s and 6.83 m/s
Explanation:
From the principle of conservation of momentum
where m is the mass,
is the initial speed before impact,
and
are velocity of the impacting object after collision and velocity after impact of the originally constant object
Therefore
After collision, kinetic energy doubles hence
Substituting 5 m/s for
then
Also, it’s known that
hence
Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then
Substituting,
Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s
Explanation:
Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so
Ff = μs×m1×g
m1×a = μs×m1×g
a = μs×g
The applied force is given by
F = (m1 + m2)×a so
F = μs×g×(m1+m2)
Answer:C
Explanation:
Mass energy of hydrogen fusing into helium
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
Time before projectile hits wall
= 88.2 m / 29.4 m/s = 3 seconds
Vertical velocity of projectile after three seconds
= 3*9.8 = 29.4 m/s
Horizontal velocity of projectile after three seconds, assuming no air resistance
= 29.4 m/s (given)
Conclusion:
velocity of projectile when it hits the wall
= < 29.4, -29.4> m/s
= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal
= 41.58 m/s east-bound at 45 degrees below horizontal.