To solve this
problem, we should remember that:
Energy = Force x Distance
Since we are talking about charges, therefore we make use
of Coulumb’s law for the electrical force between the two charges:
F = k q1 q2 / d^2
Where,
k = Coulumb’s constant = 9 x 10^9 N m^2/ c^2
q = charge
d = distance between the charges
Plugging back into the energy equation:
E = (k q1 q2 / d^2) * d
E = k q1 q2 / d
Solving for E using the given values:
E = (9 x 10^9 N m^2/ c^2) (3.4 E -6 c) (6.6 E -6 c) /
0.10 m
<span>E = 2.02 N m = 2.02 J</span>
Answer:
the curve inclination is increased so that a weight component helps keep the car on track
Explanation:
In the sledging competition these devices go at quite high speeds over 100 km/h, so when reaching the curves the friction force is not enough to keep the car on the track. For this reason, the curve inclination is increased so that a weight component helps keep the car on track.
In general we can solve Newton's second law for this case, with the condition of no friction, it is found that
V² = r g tan θ
Where V is the maximum velocity, r is the radius of the curve a, θ is the angle of the inclination
Answer:
Ordinal
Explanation:
There are four levels of measurement which include the nominal, ordinal, interval, and ratio. The data collected above is ordinal data as it qualifies the data and still indicates the ordering of the data. It gives the observer an idea of the range of data collected or its rating although mathematical calculations may not be done with it.
The other forms of data include the nominal which simply qualifies the data, the interval which qualifies the data but which the differences between the data can be obtained, and of course the data has no starting point. The ratio scale which is similar to the interval scale but which the ratios between the data obtained can be compared.
Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
Answer:
37357 sec
or 622 min
or 10.4 hrs
Explanation:
GIVEN DATA:
Lifting weight 80 kg
1 cal = 4184 J
from information given in question we have
one lb fat consist of 3500 calories = 3500 x 4184 J
= 14.644 x 10^6 J
Energy burns in 1 lift = m g h
= 80 x 9.8 x 1 = 784 J
lifts required 
= 18679
from the question,
1 lift in 2 sec.
so, total time = 18679 x 2 = 37357 sec
or 622 min
or 10.4 hrs