answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
1 year ago
9

An object of mass M is dropped near the surface of Earth such that the gravitational field provides a constant downward force on

the object. Which of the following describes what happens to the center of mass of the object-Earth system as the object falls downward toward Earth? a. It moves toward the center of Earth. b. It moves toward the object.c. It does not move. d. The answer cannot be determined without knowing the mass of Earth and the distance between the object and Earth’s center.
Physics
1 answer:
marysya [2.9K]1 year ago
6 0

Answer:

The answer is: c. It does not move

Explanation:

Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.

You might be interested in
You are seated in a bus and notice that a hand strap that is hanging from the ceiling hangs away from the vertical in the backwa
Murrr4er [49]

Answer:C

Explanation:

It is given that hand strap moves from the vertical in the backward direction.

The direction of strap depends upon the acceleration of bus i.e. if bus is accelerating in forward direction then strap will move in backward direction and vice-versa.

The reason for moving backwards is due to the psuedo acting on strap which bends the strap in backward direction

angle of inclination is given by \tan \theta =\frac{a}{g}

where a=acceleration of bus

\theta=inclination of strap from vertical

so we cannot conclude anything about the direction of the velocity of the bus

3 0
2 years ago
A heavy stone of mass m is hung from the ceiling by a thin 8.25-g wire that is 65.0 cm long. When you gently pluck the upper end
Triss [41]

Answer: m= 35.6 kg

Explanation:

For finding the mass of the stone we have the formula

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

Here, Tension= m*g = m*9.81

and linear mass density= \frac{8.25 g}{65 cm}

Linear mass density= \frac{8.25*10^-3}{65*10^-2}

Linear mass density= 0.0127 kg/m

Velocity= 2*\frac{l}{t}

Velocity= 2 * \frac{65*10^-2}{7.84}

Velocity= 165.8 m/s

So putting all these values in equation we get

v= \sqrt{\frac{Tension}{Linear. Mass. density} }

165.8= \sqrt{\frac{m*9.81}{0.0127} }

Solving we get

m= 35.58 kg

or m= 35.6 kg

3 0
2 years ago
A piston–cylinder device contains 0.15 kg of air initially at 2 MPa and 350°C. The air is first expanded isothermally to 500 kPa
Paraphin [41]

Answer:

<h2>jeusYgwyhedswusjsj</h2>

Explanation:

sjauajshsu<em>y</em><em>e</em><em>u</em><em>e</em><em>u</em><em>e</em><em>h</em><em>e</em><em>y</em><em>s</em><em>b</em><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em />

3 0
2 years ago
A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm li
babunello [35]

Answer:

0.00001266 m

Explanation:

D = Distance from source to screen

m = Order

d = Slit separation

The distance from a point on the screen to the center line

y=\frac{m\lambda D}{d}

At m = 0

y_0=0

y_1-y_0=35\ cm\\\Rightarrow y_1=35\ cm

At m = 1

y_1=\frac{1\times 633\times 10^{-9}\times 7}{d}\\\Rightarrow d=\frac{1\times 633\times 10^{-9}\times 7}{0.35}\\\Rightarrow d=0.00001266\ m

The slit separation is 0.00001266 m

3 0
2 years ago
Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
Zepler [3.9K]

Answer:

  v₂ = v/1.5= 0.667 v

Explanation:

For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.

Initial moment before pushing

    p₀ = 0

Final moment after they have been pushed

    p_{f} = m₁ v₁ + m₂ v₂

   p₀ =  p_{f}

   0 = m₁ v₁ + m₂ v₂

   m₁ v₁ = - m₂ v₂

Let's replace

   M (-v) = -1.5M v₂

   v₂ = v / 1.5

  v₂ = 0.667 v

6 0
2 years ago
Other questions:
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • A sky diver steps from a high-flying helicopter. if there were not air resistance, how fast would she be falling at the end of a
    12·1 answer
  • A cat is sleeping on the floor in the middle of a 3.0-m-wide room when a barking dog enters with a speed of 1.50 m/s. as the dog
    10·1 answer
  • Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one sma
    7·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • A small car meshes with a large truck in a head-on collision. Which of the following statements concerning the magnitude of the
    14·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
  • What is the force on a .8 kg peach falling freely in a Yakima orchard
    10·2 answers
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
  • A student practicing for a cross country meet runs 250 m in 30 s. What is the average speed
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!