answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
2 years ago
12

You are seated in a bus and notice that a hand strap that is hanging from the ceiling hangs away from the vertical in the backwa

rd direction. From this observation, you can conclude that
A. the velocity of the bus is backward.
B. the velocity of the bus is forward.
C. You cannot conclude anything about the direction of the velocity of the bus.
Physics
1 answer:
Murrr4er [49]2 years ago
3 0

Answer:C

Explanation:

It is given that hand strap moves from the vertical in the backward direction.

The direction of strap depends upon the acceleration of bus i.e. if bus is accelerating in forward direction then strap will move in backward direction and vice-versa.

The reason for moving backwards is due to the psuedo acting on strap which bends the strap in backward direction

angle of inclination is given by \tan \theta =\frac{a}{g}

where a=acceleration of bus

\theta=inclination of strap from vertical

so we cannot conclude anything about the direction of the velocity of the bus

You might be interested in
The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. the heat increased the _
uranmaximum [27]
<h2>Apartment Explosion Reported </h2>

The apartment’s explosion, reportedly caused by a gas leak, produced a violent release of gas and heat. The heat increased the temperature of the air in the room, which means an increase in the air's molecular kinetic energy.

When heat is provided then temperature increases and the molecules of substances move rapidly by increase of kinetic energy (K.E) temperature increases. It is understood that heat increases temperature.

6 0
2 years ago
Read 2 more answers
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
2 years ago
Which of the following diagrams involves a virtual image ?
sergiy2304 [10]

Answer:

The third diagram

Explanation:

  • <u>A virtual image</u> is an image that can not be formed on a screen.
  • <u>A convex lens</u> can form both virtual and real image depending on the position of the object from the lens.
  • A virtual image in convex lens is formed when the object is placed between the focus and the optical center of the lens.
  • In the third diagram, a virtual image is formed because the position of the object is between the focus and the optical center of the convex lens.
7 0
2 years ago
A measuring cylinder contains 60cm3 of oil at 0 celcius. When a piece of ice was roped into the cylinder it sank completely in o
mariarad [96]

Answer:

S_i=\frac{9}{10} =0.9

Explanation:

Given:

  • volume of oil in the cylinder, V_o=60\ cm^2
  • volume of the oil level when the ice is immersed, V=90\ cm^3
  • the volume level of oil when the ice melted, V'=87\ cm^3

<u>Now, therefore the volume of ice:</u>

V_i=V-V_o

V_i=90-60

V_i=30\ cm^3

<u>Now the volume of water:</u>

V_w=V'-V_o

V_w=87-60

V_w=27\ cm^3

As we know that the relative density is the ratio of density of the substance to the density of water.

<u>So, the relative density of ice:</u>

S_i=\frac{\rho_i}{\rho_w} .....................(1)

as we know that density is given as:

\rm \rho=\frac{mass}{volume}

now eq. (1)

S_i=\frac{m}{V_{i}}\div  \frac{m}{V_w}

where, m = mass of the water or the ice which remains constant in any phase

S_i=\frac{V_w}{V_i}

S_i=\frac{27}{30}

S_i=\frac{9}{10} =0.9

7 0
2 years ago
Lilli suggests that they explore the simulation starting with varying only a single parameter in order to understand the role of
mrs_skeptik [129]

Answer:

B.

Explanation:

One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.

Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.

By definition the equation of continuity is,

A_1V_1=A_2V_2

In the problem A_2 is 2A_1, then

A_1V_1=2A_1V_2

V_2 = \frac{V_1}{2}

<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>

For the particular case of Bernoulli we have to

P_1 + \frac{1}{2}\rho V_1^2 = P_2 +\frac{1}{2}\rho V_2^2

P_2-P_1 = \frac{1}{2} \rho (V_1^2-V_2^2)

For the previous definition we can now replace,

P_2-P_1 = \frac{1}{2} \rho (V_1^2-(\frac{V_1}{2})^2)

\Delta P =  \frac{3}{8} \rho V_1^2

<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>

The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"

4 0
2 years ago
Other questions:
  • two coconuts fall freely from rest at the same time, one twice as high as the other. If The coconut from the shorter tree takes
    8·1 answer
  • A block weighing 15 newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. if 4.0 joule
    14·1 answer
  • The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
    7·1 answer
  • A wildlife researcher is tracking a flock of geese. The geese fly 4.0 km due west, then turn toward the north by 40° and fly ano
    13·1 answer
  • A small cylinder rests on a circular turntable that is rotating clockwise at a constant speed. Which set of vectors gives the di
    9·1 answer
  • A 2-kg cart, traveling on a horizontal air track with a speed of 3 m/s, collides with a stationary 4-kg cart. The carts stick to
    5·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • If low CVP precipitates a suction alarm, rapid infusion of volume can remedy the situation after dropping the P-level.
    15·1 answer
  • With countercurrent flow, diffusion happened in all regions of the filter. Explain why
    5·1 answer
  • A frog jumps up at time t = 0.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!