That particular strike was very roughly 2.4 km (1.5 miles) away from them.
That's if you use 340 m/s (1120 ft/sec) for the speed of sound.
But the air in the region for several thousand feet around a thunderstorm
is doing weird things to sounds that pass through it, so you can't use any
exact number for the speed of sound in a stormy area.
The only thing you can be absolutely sure of is that Johnny and his friends
need to round up their equipment and get in the house. NOW !
Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum
Answer:
In February 1784, just after the close of the Revolutionary War, the General Assembly of Georgia earmarked 40,000 acres of land to endow "a college or seminary of learning." The following year, Abraham Baldwin, a lawyer and minister educated at Yale University in New Haven, Connecticut, who had settled in Georgia
Explanation:
please mark this answer as brainliest
Velocity = (displacement) / (time)
Displacement = straight-line distance between start-point and end-point
If you stop at the same point you started from, then
your displacement for the trip is zero, and your average
velocity is also zero.