answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
2 years ago
9

According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnet

ic field. According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnetic field. True False
Physics
1 answer:
Len [333]2 years ago
7 0

Answer:

TRUE

Explanation:According to Faraday’s equation, the induced emf is directly proportional to the rate of change of magnetic flux.

EMF=−NΔΦΔt, where N is number of turns of wire round the coil, ΔΦ rate of change of magnetic flux and t is the time measured in seconds.

Magnetic flux is affected by the field strength and the area covered by the coil, if magnetic field increases the induced electromotive force will increase.

You might be interested in
The average kinetic energy of the molecules of an ideal gas at 10∘C has the value K10. At what temperature T1 (in degrees Celsiu
Westkost [7]

Answer:

A) T1 = 566 k = 293°C

B) T2 = 1132 k = 859°C

Explanation:

A)

The average kinetic energy of the molecules of an ideal gas is givwn by the formula:

K.E = (3/2)KT

where,

K.E = Average Kinetic Energy

K = Boltzman Constant

T = Absolute Temperature

At 10°C:

K.E = K10

T = 10°C + 273 = 283 K

Therefore,

K10 = (3/2)(K)(283)

FOR TWICE VALUE OF K10:

T = T1

Therefore,

2 K10 = (3/2)(K)(T1)

using the value of K10:

2(3/2)(K)(283) = (3/2)(K)(T1)

<u>T1 = 566 k = 293°C</u>

<u></u>

B)

The average kinetic energy of the molecules of an ideal gas is given by the formula:

K.E = (3/2)KT

but K.E is also given by:

K.E = (1/2)(m)(vrms)²

Therefore,

(3/2)KT = (1/2)(m)(vrms)²

vrms = √(3KT/m)

where,

vrms = Root Mean Square Velocity of Molecule

K = Boltzman Constant

T = Absolute Temperature

m = mass

At

T = 10°C + 273 = 283 K

vrms = √[3K(283)/m]

FOR TWICE VALUE OF vrms:

T = T2

Therefore,

2 vrms = √(3KT2/m)

using the value of vrms:

2√[3K(283)/m] = √(3KT2/m)

2√283 = √T2

Squaring on both sides:

(4)(283) = T2

<u>T2 = 1132 k = 859°C</u>

8 0
2 years ago
Frances drew a diagram to show electromagnetic induction.
kari74 [83]

Answer:

The answer is B) Magnetic field

Explanation:

I chose it and I got it right

8 0
2 years ago
Read 2 more answers
An amusement park ride raises people high into the air, suspends them for a moment, and then drops them at a rate of free-fall a
blsea [12.9K]

Answer: apparent weighlessness.


Explanation:


1) Balance of forces on a person falling:


i) To answer this question we will deal with the assumption of non-drag force (abscence of air).


ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).


iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).


2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.


3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.


Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.

3 0
2 years ago
Read 2 more answers
To crossing over the flooded canal.
zubka84 [21]

Answer:

F. jumping

Explanation:

you can't throw/toss yourself, you cant roll over water, catching?, you cant run over water, jumps are bigger than hops

4 0
2 years ago
What results when energy is transformed while juggling three bowling pins?
Nady [450]

Answer:

his is an example of the transformation of gravitational potential energy into kinetic energy

Explanation:

The game of juggling bowling is a clear example of the conservation of mechanical energy,

when the bolus is in the upper part of the path mechanical energy is potential energy; As this energy descends, it becomes kinetic energy where the lowest part of the trajectory, just before touching the hand, is totally kinetic.

At the moment of touching the hand, a relationship is applied that reverses the value of the speed, that is, now it is ascending and the cycle repeats.

Therefore this is an example of the transformation of gravitational potential energy into kinetic energy

8 0
1 year ago
Other questions:
  • Consider a boat heading due east at 15 miles/hour. The water's current is moving at 7.1 miles/hour at 45º south of east. Drag ve
    14·2 answers
  • A baseball bat is 32 inches (81.3 cm) long and has a mass of 0.96 kg. Its center of mass is 22 inches (55.9 cm) from the handle
    11·1 answer
  • Calculate the distance d from the center of the sun at which a particle experiences equal attractions from the earth and the sun
    14·1 answer
  • For this exercise, use the position function s(t) = −4.9t2 + 250, which gives the height (in meters) of an object that has falle
    10·1 answer
  • Kate is researching air pollution and finds some information on ozone. She knows that ozone is a good thing as part of the ozone
    10·1 answer
  • A carousel - a horizontal rotating platform - of radius r is initially at rest, and then begins to accelerate constantly until i
    5·1 answer
  • Two very large parallel metal plates, separated by 0.20 m, are connected across a 12-V source of potential. An electron is relea
    15·1 answer
  • In this experiment, you need to examine the idea of thermal energy transfer. Using a controlled experiment, what might a good qu
    12·3 answers
  • Q1: A runner is jogging in a straight line at a steady vr= 6.8 km/hr. When the runner is L= 2.4 km from the finish line, a bird
    9·1 answer
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!