answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mash [69]
2 years ago
9

According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnet

ic field. According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnetic field. True False
Physics
1 answer:
Len [333]2 years ago
7 0

Answer:

TRUE

Explanation:According to Faraday’s equation, the induced emf is directly proportional to the rate of change of magnetic flux.

EMF=−NΔΦΔt, where N is number of turns of wire round the coil, ΔΦ rate of change of magnetic flux and t is the time measured in seconds.

Magnetic flux is affected by the field strength and the area covered by the coil, if magnetic field increases the induced electromotive force will increase.

You might be interested in
The refractive index n of transparent acrylic plastic (full name Poly(methyl methacrylate)) depends on the color (wavelength) of
Novosadov [1.4K]

Answer:

The angle between the blue beam and the red beam in the acrylic block is  

 \theta _d  =0.19 ^o

Explanation:

From the question we are told that

     The  refractive index of the transparent acrylic plastic for blue light is  n_F  =  1.497

     The  wavelength of the blue light is F  =  486.1 nm  =  486.1 *10^{-9} \ m

    The  refractive index of the transparent acrylic plastic for red light is  n_C  =  1.488

       The  wavelength of the red light is C =  656.3 nm  = 656.3 *10^{-9} \  m

    The incidence angle is  i  =  45^o

Generally from Snell's law the angle of refraction of the blue light  in the acrylic block  is mathematically represented as

       r_F =  sin ^{-1}[\frac{sin(i) *  n_a }{n_F} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_F =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.497} ]

      r_F  =  28.18^o

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as

       r_C =  sin ^{-1}[\frac{sin(i) *  n_a }{n_C} ]

Where  n_a is the refractive index of air which have a value ofn_a =  1

So

     r_C =  sin ^{-1}[\frac{sin(45) *  1 }{ 1.488} ]

      r_F  =  28.37^o

The angle between the blue beam and the red beam in the acrylic block

     \theta _d  =  r_C  - r_F

substituting values

       \theta _d  = 28.37 -  28.18

       \theta _d  =0.19 ^o

 

4 0
2 years ago
A student is conducting a physics experiment and rolls four different-
joja [24]

Answer:

<em>I think the answer is C</em>

<em />

Explanation:

Its heavy but not too heavy

4 0
2 years ago
A capacitor with C = 6.00 μF is fully charged by connecting it to a battery that has emf 50.0 V. The capacitor is disconnected f
Arte-miy333 [17]

Answer:

1.99×10^-4coulombs

Explanation:

The charge (Q) across the resistor the directly proportional to the voltage (V) where capacitance of the capacitor(C) is the proportionality constant. Mathematically, Q = CV

If V is the voltage across the resistor, V = IR (according to ohm's law) where I is the current in the resistor and R is the resistance.

We need to calculate the voltage on the resistor first when 0.18A current is passed through it.

V = 0.18 × 185

V = 33.3Volts

The charge Q on the resistor will be;

Q = CV

Were C = 6.00 μF, V = 33.3

Q= 6×10^-6 ×33.3

Q = 0.0001998

Q= 1.99×10^-4Coulombs

4 0
2 years ago
(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500 - μC charge and flies due west at a sp
12345 [234]

(a) 2.64\cdot 10^{-8} N north

We can treat the aircraft as a single point charge moving in a magnetic field. In this case, the magnetic force exerted on the plane is

F=qvB sin \theta

where

q=0.500 \mu C = 0.500\cdot 10^{-6} C is the charge on the plane

v = 660 m/s is the velocity

B=8.00\cdot 10^{-5} T is the magnitude of the magnetic field

\theta=90^{\circ} is the angle between the direction of motion of the jet and of the magnetic field

Substituting,

F=(0.5\cdot 10^{-6})(660)(8.0\cdot 10^{-5})=2.64\cdot 10^{-8} N

The direction can be found by using Fleming's left hand rule. We have:

- index finger: magnetic field direction (straight up)

- middle finger: velocity of the plane (due west)

- force: thumb --> north

(b) Not negligible

As we can see from part (a), the magnitude of the force is not really big, so the effects are negligible.

For instance, we can compare this force with the weight of a plane. If we take a Boeing 737, its mass is about 80,000 kg, so its weight is

W=mg=(80000)(9.8)=784,000 N

As we can see, this is several orders of magnitude bigger than the magnetic force calculated at point (a), so the effects of the magnetic force are negligible.

8 0
2 years ago
A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
wel

Answer:

the tension T2 when the rock is completely immersed is T2 =  29.05 N

Explanation:

from Newton's second law

F= m*a

where F= force , m= mass , a= acceleration

when the rock is suspended ,a=0 since it is at rest. Then

T1 - m*g = 0 , T1= tension when suspended in air , g= gravity

assuming constant density of the rock

m= ρ rock *V , where  ρ rock = density of the rock , V= volume

thus

T1= m*g = ρ rock *g*V

V=  T1/(ρ rock *g)

when the rock is submerged in oil , it receives an upward force that equals the weight of the volume of displaced oil (V displaced). Since it is completely submerged the volume displaced is the volume of the rock V=Vdisplaced  

When the rock is at rest , then

F= m*a=0

T2 + ρ oil *g*V displaced - ρ rock *g*V  =0

T2 = ρ rock *g*V - ρ oil *g*V = g*V (ρ rock - ρ oil)

T2 = g*V (ρ rock - ρ oil) = T1/(ρ rock *g) *g * (ρ rock - ρ oil)

T2 = T1 * (ρ rock - ρ oil)/ρ rock

replacing values

T2 = 48 N * (1900 kg/m3- 750 kg/m3)/ 1900 kg/m3 = 29.05 N

T2 =  29.05 N

3 0
2 years ago
Other questions:
  • Isaac throws an apple straight up from 1.0 m above the ground, reaching a maximum height of 35 meters. Neglecting air resistance
    10·2 answers
  • Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
    10·2 answers
  • Can pockets of vacuum persist in an ideal gas? Assume that a room is filled with air at 20∘C and that somehow a small spherical
    5·1 answer
  • A sleepy student drops a calculator out of a window that's 20.7\text{ m}20.7 m20, point, 7, start text, space, m, end text off t
    10·1 answer
  • An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a dista
    14·1 answer
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • According to the Revere and Black (2003) article, processes that result in an error probability of 0.000070 should be recognized
    8·1 answer
  • A new technology company is marketing drones for residential use. The bar graph shows the relation between number of sales and t
    12·1 answer
  • Two runners ran side by side each holding one end of a horizontal pole. What would most likely happen if one of the runners bega
    7·1 answer
  • 1-A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!