Answer:
A) T1 = 566 k = 293°C
B) T2 = 1132 k = 859°C
Explanation:
A)
The average kinetic energy of the molecules of an ideal gas is givwn by the formula:
K.E = (3/2)KT
where,
K.E = Average Kinetic Energy
K = Boltzman Constant
T = Absolute Temperature
At 10°C:
K.E = K10
T = 10°C + 273 = 283 K
Therefore,
K10 = (3/2)(K)(283)
FOR TWICE VALUE OF K10:
T = T1
Therefore,
2 K10 = (3/2)(K)(T1)
using the value of K10:
2(3/2)(K)(283) = (3/2)(K)(T1)
<u>T1 = 566 k = 293°C</u>
<u></u>
B)
The average kinetic energy of the molecules of an ideal gas is given by the formula:
K.E = (3/2)KT
but K.E is also given by:
K.E = (1/2)(m)(vrms)²
Therefore,
(3/2)KT = (1/2)(m)(vrms)²
vrms = √(3KT/m)
where,
vrms = Root Mean Square Velocity of Molecule
K = Boltzman Constant
T = Absolute Temperature
m = mass
At
T = 10°C + 273 = 283 K
vrms = √[3K(283)/m]
FOR TWICE VALUE OF vrms:
T = T2
Therefore,
2 vrms = √(3KT2/m)
using the value of vrms:
2√[3K(283)/m] = √(3KT2/m)
2√283 = √T2
Squaring on both sides:
(4)(283) = T2
<u>T2 = 1132 k = 859°C</u>
Answer:
The answer is B) Magnetic field
Explanation:
I chose it and I got it right
Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
F. jumping
Explanation:
you can't throw/toss yourself, you cant roll over water, catching?, you cant run over water, jumps are bigger than hops
Answer:
his is an example of the transformation of gravitational potential energy into kinetic energy
Explanation:
The game of juggling bowling is a clear example of the conservation of mechanical energy,
when the bolus is in the upper part of the path mechanical energy is potential energy; As this energy descends, it becomes kinetic energy where the lowest part of the trajectory, just before touching the hand, is totally kinetic.
At the moment of touching the hand, a relationship is applied that reverses the value of the speed, that is, now it is ascending and the cycle repeats.
Therefore this is an example of the transformation of gravitational potential energy into kinetic energy