answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
2 years ago
10

Isaac throws an apple straight up from 1.0 m above the ground, reaching a maximum height of 35 meters. Neglecting air resistance

, what is the ball's velocity when it hits the ground?

Physics
2 answers:
mamaluj [8]2 years ago
6 0
26.2005 m/s will be the velocity of the apple right when it hits the ground and the initial velocity would be 25.8235 m/s

so Vf=26.2005
and Vi=25.8235

the velocity difference is due to the apple having an initial height of 1 meter
Lady_Fox [76]2 years ago
5 0

The ball's velocity when it hits the ground is about 26 m/s

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem !

This problem is about kinematics.

At the maximum height , the velocity of the ball is 0 m/s

<u>Given:</u>

maximum height = h = 35 m

velocity at the maximum height = 0 m/s

gravitational accelerationg = 9.8 m/s²

<u>Unknown:</u>

velocity at the ground = v = ?

<u>Solution:</u>

v^2 = u^2 + 2gh

v^2 = 0^2 + 2(9.8)(35)

v^2 = 686

v = \sqrt {686}

v = 7\sqrt{14} ~ m/s

v \approx 26 ~ m/s

<h3>Conclusion:</h3>

The ball's velocity when it hits the ground is about 26 m/s

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Speed , Time , Rate

You might be interested in
what did classical physics predict about electron flow as a result of light shining on a metal surface?
stiv31 [10]
This looks like the photo electric effect ... classical physics reckoned that if you shone an intense enough light beam on a metal you could get electrons ejected from the metal (maybe in analogy to thermionic emission - heat). It sort of "forgot" about the frequency and photon/particle nature of light.
Enter the "photo electric" effect experiment, Einstein's explanation, and the Nobel committee having an excuse to award E a Nobel prize, even though said prize was probably more for relativity.
8 0
2 years ago
A hot–air balloon is moving at a speed of 10 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–dir
IrinaVladis [17]
The ball has an initial speed of 10m/s. This is because it is moving with the balloon. Now the balloonist throws the ball 4m/s with respect to himself, so it means that he gives the ball a extra push of 4m/s, so the total speed is 14m/s. Since it takes 30 seconds to reach the ground, the distance travelled is 14*30=420m.
7 0
2 years ago
4. A cylindrical tube has a length of 14.4cm and a radius of 1.5cm and is filled with a colorless gas. If the density of the gas
professor190 [17]

Answer:

Mass, m of gas is 0.2504 grams.

Explanation:

First, we need to solve for the volume of the cylindrical tube.

Volume of cylinder is given by the formula;

V = 2\Pi r^{2}h

Where, V represents volume.

π represents pie

r represents radius.

h represents height or length.

Given the following data;

Radius, r = 1.5cm

Length, h = 14.4cm

Density, d = 0.00123g/cm³

Substituting into the equation;

V = 2 * 3.142 * (1.5)^{2}14.4

V = 2 * 3.142 * 2.25 * 14.4

V = 203. 6016

Therefore, the volume of the cylindrical tube is 203. 6016cm³

Density can be defined as mass all over the volume of an object.

Simply stated, density is mass per unit volume of an object.

Mathematically, density is given by the formula;

Density = \frac{mass}{volume}

Mass = density  *  volume

Substituting into the equation, we have;

Mass = 0.00123 * 203. 6016

Mass = 0.2504g.

5 0
2 years ago
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
2 years ago
A fly has a mass of 1 gram at rest. how fast would it have to be traveling to have the mass of a large suv, which is about 3000
Zigmanuir [339]

We solve this using special relativity. Special relativity actually places the relativistic mass to be the rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt (1 - (v/c)^2). <span>

We want a ratio of 3000000 to 1, or 3 million to 1. 

</span>

<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2) 
1 - (v/c)^2 = (0.000000333)^2 
0.99999999999999 = (v/c)^2 
0.99999999999999 = v/c 
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>

8 0
2 years ago
Other questions:
  • The following represents a process used to assemble a chair with an upholstered seat. stationsa, b, and c make the seat; station
    14·1 answer
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • A child wants to pump up a bicycle tire so that its pressure is 1.2 × 105 pa above that of atmospheric pressure. if the child us
    11·2 answers
  • Which combination of initial horizontal velocity, (vh) and initial vertical velocity, (vv) results in the greatest horizontal ra
    7·1 answer
  • Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y
    13·1 answer
  • A physicist is constructing a solenoid. She has a roll of insulated copper wire and a power supply. She winds a single layer of
    10·1 answer
  • Air escapes from a balloon at a rate of 2 60 ( ) 1 R t t   3 ft / min , where t is measured in minutes. How much air (in 3 ft
    8·1 answer
  • Mo is on a baseball team and hears that a ball thrown at a 45 degree angle from the ground will travel the furthest distance. Ho
    13·1 answer
  • The seeds were sown (change the voice)​
    15·1 answer
  • A solid block of mass m is suspended in a liquid by a thread. The density of the block is greater than that of the liquid. Initi
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!