answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zielflug [23.3K]
1 year ago
13

Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y

ears = 13.0 × 1025 m with an average total mass density of about 1 × 10-26 kg/m3. Only about 4% of total mass is due to "ordinary" matter (such as protons, neutrons, and electrons). Part A Estimate how much ordinary matter (in kg) there is in the observable universe.
Physics
1 answer:
-BARSIC- [3]1 year ago
6 0

Answer:

3.7\times 10^{51}) kg

Explanation:

R = radius of the sphere modeled as universe = 13\times 10^{25} m

Volume of sphere is given as

V = \frac{4\pi R^{3}}{3}

V = \frac{4(3.14) (13\times 10^{25})^{3}}{3}

V = 9.2\times 10^{78} m³

\rho = average total mass density of universe = 1\times 10^{-26} kg/m³

m = Total mass of the universe = ?

We know that mass is the product of volume and density, hence

m = \rho V

m = (1\times 10^{-26}) (9.2\times 10^{78})

m = 9.2\times 10^{52} kg

M = mass of "ordinary" matter  = ?

mass of "ordinary" matter is only about 4% of total mass, hence

M = (0.04) m

M = (0.04)(9.2\times 10^{52})

M = 3.7\times 10^{51} kg

You might be interested in
Ari, a young patient who is regularly treated by a psychiatrist, feels compelled to carry out repetitive tasks the same way very
blondinia [14]
OCD would probably be the answer.
5 0
2 years ago
Read 2 more answers
Chris and Jamie are carrying Wayne on a horizontal stretcher. The uniform stretcher is 2.00 m long and weighs 100 N. Wayne weigh
PIT_PIT [208]

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The value is F_j  =  550\ N

Explanation:

From the question we are told that

   The length of the stretcher is  d =  2.0 \  m

    The weight of the stretcher is W  =  100 \  N

    The weight for Wayne is  W_w =  800 \ N

     The distance of  center of gravity for Wayne from Chris is c_w = 75 cm  =  0.75 \ m

Generally taking moment about the first end where Chris is

         F_j *  d              => upward moment

Here F_j is the force applied by Jamie

Generally  taking moment about the second end where Jamie is

      W *  ( \frac{d}{2} ) +  W_w * (d - c_w)      => downward moment

Generally at equilibrium , the upward moment is equal to the downward moment

     F_j *  d = W *  ( \frac{d}{2} ) +  W_w * (d - c_w)

=>   F_j *  2  = 100 *  ( \frac{ 2}{2} ) +  800 * (2 - 0.75)

=>    F_j  =  550\ N

3 0
2 years ago
In a house the temperature at the surface of a window is 28.9 °C. The temperature outside at the window surface is 7.89 °C. Heat
Alenkasestr [34]

Answer:

-13.18°C

Explanation:

To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.

Its definition is given by the function

\frac{Q}{t} = \frac{kA\Delta T}{d}

Where,

Q = The amount of heat transferred

t = time

k = Thermal conductivity constant

A = Cross-sectional area

\Delta T = The difference in temperature between one side of the material and the other

d= thickness of the material

The problem says that there is a loss of heat twice that of the initial state, that is

Q_2 = 2*Q_1

Replacing,

kA\frac{\Delta T_m}{x} = 2*kA\frac{\Delta T}{x}

\frac{\Delta T}{x}=2*\frac{\Delta T}{x}

\frac{T_i-T_o}{x} = 2\frac{T_1-T_2}{x}

\frac{28.9-T_o}{x} = 2\frac{28.9-7.86}{x}

Solvinf for T_o,

T_o = -13.18

Therefore the temprature at the outside windows furface when the heat lost per second doubles is  -13.18°C

3 0
2 years ago
On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are unifo
timofeeve [1]

Answer:

a = 0.5 m/s²

Explanation:

Applying the definition of angular acceleration, as the rate of change of the angular acceleration, and as the seats begin from rest, we can get the value of the angular acceleration, as follows:

ωf = ω₀ + α*t

⇒ ωf = α*t ⇒ α = \frac{wf}{t} = \frac{1.4 rad/s}{21 s} = 0.067 rad/s2

The angular velocity, and the linear speed, are related by the following expression:

v = ω*r

Applying the definition of linear acceleration (tangential acceleration in this case) and angular acceleration, we can find a similar relationship between the tangential and angular acceleration, as follows:

a = α*r⇒ a = 0.067 rad/sec²*7.5 m = 0.5 m/s²

3 0
2 years ago
Drag the tiles to the correct boxes to complete the pairs. Match the sentences with the steps of the scientific method
Assoli18 [71]

Solution:

Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.

Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?

State a hypothesis- Sunlight is probably essential for plants to grow and live.

Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.

Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.

Communicate the results to others - Plants need sunlight to make food so they can live.

4 0
2 years ago
Other questions:
  • What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
    10·2 answers
  • A worker kicks a flat object lying on a roof. The object slides up the incline 10.0 m to the apex of the roof, and flies off the
    7·1 answer
  • John is running down the street and hears dogs barking in the distance. How do the sound waves change as John approaches the bar
    12·1 answer
  • The gravitational field of m1 is denoted by g1. Enter an expression for the gravitational field g1 at position la in terms of m1
    14·1 answer
  • 4. A ball of clay, of mass m, traveling at speed vo, collides and sticks to a stationary stick. The ball approaches the stick in
    13·2 answers
  • Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
    8·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    8·1 answer
  • Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away. Arrow b
    5·2 answers
  • A student must design an experiment to determine the relationship between the mass of an object and the resulting acceleration w
    8·1 answer
  • A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!