The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
<u>Explanation:</u>
Given data,
E= 3 ×10 ⁶ Δx=0.06/100
We have to find the minimum potential difference
E= -ΔV/Δx
ΔV=- E × Δx
ΔV =-3 ×10 ⁶ . 0.06/100
ΔV=-1800 V
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
Answer:

Explanation:
The electric field produced by a single point charge is given by:

where
k is the Coulomb's constant
q is the charge
r is the distance from the charge
In this problem, we have
E = 1.0 N/C (magnitude of the electric field)
r = 1.0 m (distance from the charge)
Solving the equation for q, we find the charge:

Answer:
The acceleration of the rocket is 10 m/s².
Explanation:
Let the acceleration of the rocket be
m/s².
Given:
Mass of the rocket is, 
Thrust force acting upward is, 
Acceleration due to gravity is, 
Now, force acting in the downward direction is due to the weight of the rocket and is given as:

Now, net force acting on the rocket in upward direction is given as:

Therefore, from Newton's second law, net force acting on the rocket is equal to the product of mass and acceleration.

Therefore, the acceleration of the rocket is 10 m/s².
Answer:
Explanation:
According to the statement, three confused sleigh dogs are trying to pull a sled across the Alaskan snow.
Forces in same direction gets added , so 35N + 42N=77N and the Net Force is 77N -53N as it is acting in opposite direction.
Net force is 25N in east to the maximum without any hassle.
-------------------------------------------------------------------------------------------------
thankyou : )
Answer:
Force plane exert on pilot = 4270 N
Explanation:
first convert radius and speed to ms
using formula from force we know that
mass = weight/ gravity = 700 N/ 9.8N/kg= 71.4 kg
Fc= N-mg
N= Fc+ mg As Fc = mv²/R
N= mv²/R + mg
taking m common
N= m( v²/R +g)
= 71.4( (200)²/ 800 + 9.8 )
Force = 4270 N