Answer:
Smaller refractive power
Explanation:
The refractive power of an eye is the extent to which it can converge or diverge the light rays.
Near point is the the closest point for an eye such that when an object is placed at that point the image it forms is sharp and clearly visible to the eye.
A the person ages, the ciliary muscles of the eyes weakens and as a result the lens contracts and the formation of the image takes place behind the retina instead of forming at the retina.
Thus the near point also increases and the refractive power becomes smaller.
That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.