Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm
k = spring constant of the spring = 85 N/m
m = mass of the box sliding towards the spring = 3.5 kg
v = speed of box just before colliding with the spring = ?
x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m
the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.
Using conservation of energy
Kinetic energy of spring before collision = spring energy of spring after compression
(0.5) m v² = (0.5) k x²
m v² = k x²
inserting the values
(3.5 kg) v² = (85 N/m) (0.065 m)²
v = 0.32 m/s
You have to take note of the individual directions of the plane. Since one is heading east, and the other is heading west, the planes are heading at opposite directions. So, it means that their distance between each other would be equal to 1,200 miles which accounts for the sum of their individual distances. The equation is as follows:
Total Distance = Distance of slower plane + Distance of faster plane
1,200 miles = st + (30+s)(t)
where
s is the speed of the slower plane and t is the time. Since both are not given, the final answer would just be in terms of s.
1,200 = t(s + 30 + s)
t = 1200/(30+2s)
t = 600/(15+s)
Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/