Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N
Answer:
The speed of ejection is 
Solution:
As per the question:
Magnetic field density, B = 0.4 T
Density of the material in the sunspot, 
Now,
To calculate the speed of ejection of the material, v:
The magnetic field energy density is given by:

This energy density equals the kinetic energy supplied by the field.
Thus


where
m = mass of the sunspot in
= 


Answer:
t = 6,485 s
, t_step = 25.94 s
the elephant gives 2.3 step very minute
Explanation:
Let's approximate this system to a simple pendulum that has angular velocity
w = √L / g
Angular velocity and period are related
w = 2π / T
T = 2π √g / L
Let's find the period
T = 2π √9.8 / 2.3
T = 12.97 s
Stride time is
t = T / 2
t = 12.97 / 2
t = 6,485 s
Frequency is inversely proportional to period
f = 1 / t
f = 1 / 6,485
f = 0.15 Hz
Since the elephant has 4 legs and each uses a time t, the total time for one step is
t_step = 4 t
t_step = 4 6.485
t_step = 25.94 s
f_step = 1/t_step =0.0385 s-1
Now let's use a proportion rule to find the number of steps in 60 s
#_step = 60 / t_step
#__step = 60 / 25.94
#_step = 2.3 steps
So the elephant gives 2.3 step very minute
Answer:
-13.18°C
Explanation:
To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.
Its definition is given by the function

Where,
Q = The amount of heat transferred
t = time
k = Thermal conductivity constant
A = Cross-sectional area
The difference in temperature between one side of the material and the other
d= thickness of the material
The problem says that there is a loss of heat twice that of the initial state, that is

Replacing,




Solvinf for
,

Therefore the temprature at the outside windows furface when the heat lost per second doubles is -13.18°C
<em>ANSWER</em>
<u>An increase in relative humidity</u>
<em><u>Could you mark me brainliest plz?</u></em>