Initial speed of the coin (u)= 0 (As the coin is released from rest)
Acceleration due to gravity (a) = g = 9.81 m/s²
Time of fall (t) = 1.5 s
From equation of motion we have:

By substituting values in the equation, we get:
v = 0 + 9.81 × 1.5
v = 14.715 m/s
Speed of the coin as it hits the ground/Final speed of the coin = 14.715 m/s
Answer:
Explanation:
Given
Minute hand length =16 cm
Time at a quarter after the hour to half past i.e. 1 hr 45 min
Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270


(c)For the next half hour
Effectively it has covered 2 revolution and a quarter

angle turned 
(f)Hour after that
After an hour it again comes back to its original position thus displacement is same =25.136
Angle turned will also be same i.e. 
Answer:
a.) F = 3515 N
b.) F = 140600 N
Explanation: given that the
Mass M = 74kg
Initial velocity U = 7.6 m/s
Time t = 0.16 s
Force F = change in momentum ÷ time
F = (74×7.6)/0.16
F = 3515 N
b.) If Logan had hit the concrete wall moving at the same speed, his momentum would have been reduced to zero in 0.0080 seconds
Change in momentum = 74×7.6 + 74×7.6
Change in momentum = 562.4 + 562.4 = 1124.8 kgm/s
F = 1124.8/0.0080 = 140600 N
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x