answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
1 year ago
12

A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.

Physics
1 answer:
Pie1 year ago
3 0

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

You might be interested in
Jocko the clown, whose mass is 60-Kg, stands on a skateboard. A 20-Kg ball is thrown at Jocko at 3m/s, and when he catches the b
Mekhanik [1.2K]

Answer:

The speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.

Explanation:

Given that,

Mass if Jocko, m = 60 kg

Mass of the ball, m' = 20 kg

Speed of the ball, v = 3 m/s

Let V is the speed of Jocko and the ball move after he catches the ball. The momentum of the system remains conserved. Using the conservation of momentum as :

m'v'=(m+m')V\\\\V=\dfrac{m'v'}{(m+m')}\\\\V=\dfrac{20\times 3}{(60+20)}\\\\V=0.75\ m/s

So, the speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.

7 0
2 years ago
Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
Lunna [17]

Answer:

The final speed will be the same for the children on the shorter side and on the longer side.

Explanation:

This is because since the they are the same distance above the ground, their potential energy which is a function of mass, acceleration due to gravity and vertical height are the same.

PE = Mass × gravity × vertical height

At this point, we can deduce that the horizontal length of the slide has no effect on the potential energy. Only the vertical height does.

All this potential energy is converted to kinetic energy at the end of the slide. Since the potential energy is the same, then the kinetic energy will be the same and thus their velocity is the same.

Mathematically, consider that PE = mgh and KE = \frac{1}{2}mv^{2}

at the bottom of the slide, since energy has to be conserved, PE must be equal to KE.

mgh = \frac{1}{2}mv^{2}

final velocity of the child , v = \sqrt{2gh}

It shows the final velocity is only a function f acceleration due to gravity and height.

Thus, making their velocities equal.

8 0
1 year ago
A 4 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hangi
Anarel [89]

Answer:

(a) 19.62 N

(b) Box moves down the slope

(c) 24.43 N

Explanation:

(a)  

2 Kg box  causes tension

T=mgwhere m is mass, g is gravitational force taken as 9.81T=2*9.81 =19.62 N  (b)  Block mass of 4 Kg  [tex]T'-mg sin \theta=0 hence T'=mg sin \theta where m is mass and g is gravitational force  

T'=4*9.81 sin 35= 22.5071 N  

Since T' is greater than mg sin\theta , then the box moves down the slope  

(c)  

Acceleration a= \frac {forward   force-backward   force}{Total mass}= \frac {mg sin \theta -mg}{m1 + m2}  

a= \frac {22.51-19.62}{2+4}=0.48

When moving, the box will exert force T"= mgsin \theta + ma  

T"= 4*9.81 sin 35 +(4*0.48)= 24.43 N

7 0
2 years ago
Read 2 more answers
Two resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are
ehidna [41]

Answer

The Value of  r  = 0.127

Explanation:

The mathematical representation of the two resistors connected in series is

                               R_T = R_1 +R_2

 And from Ohm law

                           I_s =\frac{ V}{R_T}

                            I_s  = \frac{V_0}{R_1 +R_2} ---(1)

The mathematical representation of the two resistors connected in parallel  is

                    R_T = \frac{1}{R_1} +\frac{1}{R_2}

                          = \frac{R_1 R_2}{R_1 +R_2}

From the question I_p =10I_s

          =>                 I_p =10I_s = \frac{V_0 }{\frac{R_1R_2}{R_1 +R_2} }  = \frac{V_0 (R_1 +R_2)}{R_1 R_2}---(2)

     Dividing equation 2 with equation 1

       =>                 \frac{10I_s}{I_s} =\frac{\frac{V_0 (R_1 +R_2)}{R_1 R_2}}{\frac{V_0}{R_1 +R_2}}

                                  10 = \frac{(R_1+R_2)^2}{R_1 R_2}----(3)

We are told that    r = \frac{R_1}{R_2} \ \ \ \ \  = > R_1 = rR_2

From equation 3  

                            10 = \frac{(1-r)^2}{r}

=> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  1+r^2 + 2r = 10r

=> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r^2 -8r+1 = 0

Using the quadratic formula

                             r =\frac{-b\pm \sqrt{(b^2 - 4ac)} }{2a}

        a = 1  b = -8 c =1  

                              =  \frac{8 \pm\sqrt{((-8)^2- (4*1*1))} }{2*1}

                               r= \frac{8+ \sqrt{60} }{2}  \ or \  r = \frac{8 - \sqrt{60} }{2}

                              r = \ 7.87\ or \  r \  = \ 0.127

Now  r =  0.127 because it is the least value among the obtained values

                               

                                   

                             

4 0
1 year ago
A force of 10 newtons toward the right is exerted on a
weeeeeb [17]

Answer:

Explanation:

coefficient of kinetic friction of wooden floor μ = .4

force of friction = μ R , R is reaction force of floor

R = mg = weight of body

R = 25 N

force of friction = .4 x 25 = 10 N

Net force on the crate = 10 - 10 = zero .

Net force on the body will be nil.

6 0
2 years ago
Other questions:
  • When Jane drives to work, she always places her purse on the passenger’s seat. By the time she gets to work, her purse has falle
    5·2 answers
  • A beam of monochromatic light (f =5.09 ×1014 Hz) has a wavelength of 589 nanometers in air. What is the wavelength of this light
    6·1 answer
  • Which type of listening response includes the use of head nods, facial expressions, and short utterances such as "uh-huh" that s
    8·1 answer
  • An object is thrown horizontally off a cliff with an initial velocity of 5.0 meters per second. the object strikes the ground 3
    9·2 answers
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
    14·2 answers
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • A Chevrolet Corvette convertible can brake to a stop from a speed of 60.0 mi/h in a distance of 123 ft on a level roadway. What
    8·1 answer
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
  • A 6V radio with a current of 2A is turned on for 5 minutes. Calculate the energy transferred in joules
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!