At r = 2R> R The expression for the electric field will be given by: (2R)^2*E=kQ. Where, k=(9*10^9)N.m/C^2, Q=(8*10^-10)C and R=0.025m. So substituting and clearing, we have that the magnitude of the electric field will be: E=(9*10^9)*(8*10^-10)/((2*0.025)^2)=2880 N / C.
Answer:
P=627.47W
Explanation:
To solve this problem we have to take into account, that the work done by the winch is

the force, at least must equal the gravitational force

with force the tension in the cable makes the winch go up.
The work done is

To calculate the power we need to know what is the time t. But first we have to compute the acceleration
The acceleration will be

and the time t

The power will be

HOPE THIS HELPS!!
Answer:
magnitude = 7.446 km, direction = 75.22° north of east
Explanation:
From the questions,
To get the the magnitude of the resultant vector we use Pythagoras theorem
a² = b²+c²
From the diagram,
y² = 1.9²+7.2²
y² = 55.45
y = √(55.45)
y = 7.446 km.
The direction of the dolphin is given as,
θ = tan⁻¹(7.2/1.9)
θ = tan⁻¹(3.7895)
θ = 75.22° north of east
Hence the magnitude of the resultant vector = 7.446 km, and it direction is 75.22° north of east
Answer:
F= σ² L² /2ε₀
F = (L² ε₀/4π) ΔV² / r⁴
Explanation:
a) For this exercise we can use Coulomb's law
F = - k Q² / r²
where the negative sign indicates that the force is attractive and the value of the charge is equal to the two plates
Capacitance is defined by
C = Q / ΔV
Q = C ΔV
also the capacitance for a parallel plate capacitor is related to its shape
C = ε₀ A / r
we substitute
Q = ε₀ A ΔV / r
we substitute in the force equation
F = k (ε₀ A ΔV / r)² / r²
k = 1 / 4πε₀
F = ε₀ /4π L² ΔV² / r⁴4
F = L² ΔV² ε₀/ (4π r⁴)
F = (L² ε₀/4π) ΔV² / r⁴
b) Another way to solve the exercise is to use the relationship between the force and the electric field
F = q E
where we can calculate the field created by a plane using Gaussian law, where we use a cylinder with a base parallel to the plate as the Gaussian surface
Ф = ∫E .dA =
/ ε₀
the plate have two side
2E A = q_{int} / ε₀
E = σ / 2ε₀
σ = q_{int} / A
substituting in force
F = q σ / 2ε₀
the charge total on the other plate is
q = σ A
q = σ L²
F= σ² L² /2ε₀