<span>f2 = f0/4
The gravity from the planet can be modeled as a point source at the center of the planet with all of the planet's mass concentrated at that point. So the initial condition for f0 has the satellite at a distance of 2r, where r equals the planet's radius.
The expression for the force of gravity is
F = G*m1*m2/r^2
where
F = Force
G = Gravitational constant
m1,m2 = masses involved
r = distance between center of masses.
Now for f2, the satellite has an altitude of 3r and when you add in the planet's radius, the distance from the center of the planet is now 4r. When you compare that to the original distance of 2r, that will show you that the satellite is now twice as far from the center of the planet as it was when it started. So let's compare the gravitational attraction, before and after.
f0 = G*m1*m2/r^2
f2 = G*m1*m2/(2r)^2
f2/f0 = (G*m1*m2/(2r)^2) / (G*m1*m2/r^2)
The Gm m1, and m2 terms cancel, so
f2/f0 = (1/(2r)^2) / (1/r^2)
f2/f0 = (1/4r^2) / (1/r^2)
And the r^2 terms cancel, so
f2/f0 = (1/4) / (1/1)
f2/f0 = (1/4) / 1
f2/f0 = 1/4
f2 = f0*1/4
f2 = f0/4
So the gravitational force on the satellite after tripling it's altitude is one fourth the original force.</span>
All the weight of the wooden board is bear by the support located at the centre of the rod, and the other support which is located at the end, will have no reaction force, or 0 reaction force.
Therefore the reaction at the centre support is equal to the weight of the board, while the support at the end has 0 reaction force.
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.
Explanation:
Measure unstretched length of spring, L. E.g. L = 0.60m.
Set mass to a convenient value (e.g. m = 0.5kg).
Hang mass.
Measure new spring length, L'. E.g. L' = 0.70m.
Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m
Use mg = ke (in equilibrium weight = tension)
k = mg/e
Don't know what value you are using for example. Suppose it is 10N/kg (same thing as 10m/s²).
k = 0.5*10/0.10 = 50 N/m
Repeat for a few different masses. (L always stays the same.)
Take the average of your k values.
F= (speed)/(wavelength)
Therefore, speed = Frequency x wavelength
V = 68m/s
Kinetic Energy = 1/2xmassx(velocity)^2
Input values;
K.E=1/2x7kgx(4m/s)^2
K.E.=56J