answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bekas [8.4K]
2 years ago
10

Ryan is experimenting with core materials for an electromagnet. He slides different core materials through a coil of current-car

rying wire. Sort the core materials based on whether they will or won’t increase the strength of Ryan’s electromagnet.
Physics
2 answers:
Fudgin [204]2 years ago
7 0

Answer:

We can say that electromagnet is coils of wire which behave like bar magnets with a distinct South and North poles when a current of electricity passes through the coil.

The bigger the strength of Ryan's electromagnet, the better the conductivity of the material.

The material is as follows,

1. Silver and it is the best conductor.

2. Iron.

3. Nickel

4. Steel.

5. Glass which is an insulator, and

6. wood which is an insulator, and we thoroughly know that insulators they don't conduct electricity.

Explanation:

Arte-miy333 [17]2 years ago
5 0
Will increase strength: iron, nickel, steel
won't increase strength: wood, silver, glass

^thats on Plato
You might be interested in
A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t
alexira [117]

Answer:

a. 4d.

If the car travels at a velocity of 2v, the minimum stopping distance will be 4d.

Explanation:

Hi there!

The equations of distance and velocity of the car are the following:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x =  position of the car at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

v = velocity of the car at time t.

Let´s find the time it takes the car to stop using the equation of velocity. When the car stops, its velocity is zero. Then:

velocity = v0 + a · t      v0 = v

0 = v + a · t

Solving for t:

-v/a = t

Since the acceleration is negative because the car is stopping:

v/a = t

Now replacing t = v/a in the equation of position:

x = x0 + v0 · t + 1/2 · a · t²     (let´s consider x0 = 0)

x = v · (v/a) + 1/2 · (-a) (v/a)²    

x = v²/a - 1/2 · v²/a

x = 1/2 v²/a

At a velocity of v, the stopping distance is 1/2 v²/a = d

Now, let´s do the same calculations with an initial velocity v0 = 2v:

Using the equation of velocity:

velocity = v0 + a · t

0 = 2v - a · t

-2v/-a = t

t = 2v/a

Replacing in the equation of position:

x1 = x0 + v0 · t + 1/2 · a · t²  

x1 = 2v · (2v/a) + 1/2 · (-a) · (2v/a)²

x1 = 4v²/a - 2v²/a

x1 = 2v²/a

x1 = 4(1/2 v²/a)

x1 = 4x

x1 = 4d

If the car travels at a velocity 2v, the minimum stopping distance will be 4d.

5 0
1 year ago
To move a suitcase up to the check-in stand at the airport a student pushes with a horizontal force through a distance of 0.95 m
hoa [83]

Answer:

33.68 N

Explanation:

Data

W= 32J

d- 0.95m

F= ?

W=Fd

They are asking for the magnitude which is the force, so you need to solve for force.

F=W/d

= 32J/ 0.95m

= 33.68 N

3 0
1 year ago
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
2 years ago
A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
Anestetic [448]

Answer:

Speed of 1.83 m/s and 6.83 m/s

Explanation:

From the principle of conservation of momentum

mv_o=m(v_1 + v_2) where m is the mass, v_o is the initial speed before impact, v_1 and v_2 are velocity of the impacting object after collision and velocity after impact of the originally constant object

5m=m(v_1 +v_2)

Therefore v_1+v_2=5

After collision, kinetic energy doubles hence

2m*(0.5mv_o)=0.5m(v_1^{2}+v_2^{2})

2v_o^{2}=v_1^{2} + v_2^{2}

Substituting 5 m/s for v_o then

2*(5^{2})= v_1^{2} + v_2^{2}

50= v_1^{2} + v_2^{2}

Also, it’s known that v_1+v_2=5 hence v_1=5-v_2

50=(5-v_2)^{2}+ v_2^{2}

50=25+v_2^{2}-10v_2+v_2^{2}

2v_2^{2}-10v_2-25=0

Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then v_2=6.83 m/s

Substituting, v_1=-1.83 m/s

Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s

6 0
1 year ago
When a car is 100 meters from its starting position traveling at 60.0 m/s., it starts braking and comes to a stop 350 meters fro
NISA [10]
Remember your kinematic equations for constant acceleration. One of the equations is x_{f} =  x_{i} +  v_{i}(t) + \frac{1}{2} at^{2}, where x_{f} = final position, x_{i} = initial position, v_{i} = initial velocity, t = time, and a = acceleration. 

Your initial position is where you initially were before you braked. That means x_{i} = 100m. You final position is where you ended up after t seconds passed, so x_{f} = 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was v_{i} = 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
350\:m = 100\:m + (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = 498\:m +34.445\:s^{2}(a)\\
-248\:m = 34.445\:s^{2}(a)\\
a \approx -7.2 \: m/s^{2}

Your acceleration is approximately -7.2 \: m/s^{2}.
4 0
2 years ago
Other questions:
  • If a neutral object such as paper comes close to a positively charged plastic rod, what type of charge accumulates on the side o
    14·2 answers
  • A thin film of polystyrene is used as an antireflective coating for fabulite (known as the substrate). the index of refraction o
    12·1 answer
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • Which statements accurately describe conduction and convection? Check all that apply.
    13·2 answers
  • An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m fr
    11·1 answer
  • A cable is lifting a construction worker and a crate, as the drawing shows. The weights of the worker and crate are 965 N and 15
    6·1 answer
  • If you take any pitch on the keyboard, the next occurrence of the same letter name going towards the left (down) will vibrate:
    10·1 answer
  • Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x =
    11·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    7·1 answer
  • A millionairess was told in 1992 that she had exactly 15 years to live. However, if she immediately takes off, travels away from
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!